Sharp asymptotic behavior of solutions to Benjamin-Ono type equations-short range case

被引:0
作者
Kita, Naoyasu [1 ]
Wada, Takeshi [2 ]
机构
[1] Kumamoto Univ, Fac Adv Sci & Technol, Kumamoto 8608555, Japan
[2] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
关键词
Benjamin-Ono type equations; Large time behavior; Asymptotic expansion; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; WAVES; IVP;
D O I
10.1016/j.jmaa.2020.124879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the large time behavior of a small solution to the generalized Benjamin-Ono equation with a short range nonlinearity, i.e., with the power of nonlinearity greater than 3. In this case, it is well-known that the solution is asymptotically free as t -> infinity. We are interested in the asymptotic expansion of the solution, and determine the second asymptotic term. In order to specify the second asymptotic term, we will apply a technique of Fourier series expansion. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 27 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]  
Abdelouhab L, 1992, DIFFERENTIAL INTEGRA, V5, P307
[3]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[4]   On well-posedness for the Benjamin-Ono equation [J].
Burq, Nicolas ;
Planchon, Fabrice .
MATHEMATISCHE ANNALEN, 2008, 340 (03) :497-542
[5]   The IVP for the Benjamin-Ono equation in weighted Sobolev spaces II [J].
Fonseca, German ;
Linares, Felipe ;
Ponce, Gustavo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) :2031-2049
[6]   The IVP for the Benjamin-Ono equation in weighted Sobolev spaces [J].
Fonseca, German ;
Ponce, Gustavo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) :436-459
[7]   Large time asymptotics of solutions to the generalized Benjamin-Ono equation [J].
Hayashi, N ;
Naumkin, PI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :109-130
[8]  
Hayashi N, 2002, DISCRETE CONT DYN S, V8, P237
[9]  
Hayashi Nakao., 1994, Differential Integral Equations, V7, P453
[10]   Global well-posedness of the Benjamin-Ono equation in low-regularity spaces [J].
Ionescu, Alexandru D. ;
Kenig, Carlos E. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :753-798