Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime

被引:113
作者
Xie, Guofeng [1 ,2 ]
Ju, Zhifang [2 ]
Zhou, Kuikui [2 ]
Wei, Xiaolin [2 ]
Guo, Zhixin [2 ]
Cai, Yongqing [3 ]
Zhang, Gang [3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Mat Sci & Engn, Xiangtan 411201, Peoples R China
[2] Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
[3] Inst High Performance Comp, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
SURFACE-ROUGHNESS; SIZE DEPENDENCE; TRANSPORT; SILICON; SCATTERING; REDUCTION; GRAPHENE; SHIFT;
D O I
10.1038/s41524-018-0076-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[2]   Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures [J].
Anufriev, Roman ;
Maire, Jeremie ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2016, 93 (04)
[3]   Chain formation of metal atoms [J].
Bahn, SR ;
Jacobsen, KW .
PHYSICAL REVIEW LETTERS, 2001, 87 (26) :266101-1
[4]   Phonon heat conduction in corrugated silicon nanowires below the Casimir limit [J].
Blanc, Christophe ;
Rajabpour, Ali ;
Volz, Sebastian ;
Fournier, Thierry ;
Bourgeois, Olivier .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[5]   Three-Dimensional Real-Space Simulation of Surface Roughness in Silicon Nanowire FETs [J].
Buran, Claudio ;
Pala, Marco G. ;
Bescond, Marc ;
Dubois, Mathieu ;
Mouis, Mireille .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (10) :2186-2192
[6]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[7]   Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit [J].
Carrete, J. ;
Gallego, L. J. ;
Varela, L. M. ;
Mingo, N. .
PHYSICAL REVIEW B, 2011, 84 (07)
[8]   A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (20)
[9]   Thermal transport in phononic crystals: The role of zone folding effect [J].
Dechaumphai, Edward ;
Chen, Renkun .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)