Steiner Wiener index of block graphs

被引:5
作者
Kovse, Matjaz [1 ]
Rasila, V. A. [2 ]
Vijayakumar, Ambat [2 ]
机构
[1] IIT Bhubaneswar, Sch Basic Sci, Bhubaneswar, Odisha, India
[2] Cochin Univ Sci & Technol, Dept Math, Kochi, India
关键词
Distance in graphs; Steiner distance; Wiener index; Steiner k-Wiener index; block graphs; poset of block graphs; 05C12; DISTANCE; TREES;
D O I
10.1016/j.akcej.2019.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a set of vertices of a connected graph G. The Steiner distance of S is the minimum size of a connected subgraph of G containing all the vertices of S. The Steiner k-Wiener index is the sum of all Steiner distances on sets of k vertices of G. Different simple methods for calculating the Steiner k-Wiener index of block graphs are presented.
引用
收藏
页码:833 / 840
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[2]   DISTANCE-HEREDITARY GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) :182-208
[3]   Inverse of the distance matrix of a block graph [J].
Bapat, R. B. ;
Sivasubramanian, Sivaramakrishnan .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12) :1393-1397
[4]   A characterization of block graphs [J].
Behtoei, Ali ;
Jannesari, Mohsen ;
Taeri, Bijan .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (03) :219-221
[5]  
Buckley F., 1981, C NUMER, V32, P153
[6]   The Wiener maximum quadratic assignment problem [J].
Cela, Eranda ;
Schmuck, Nina S. ;
Wimer, Shmuel ;
Woeginger, Gerhard J. .
DISCRETE OPTIMIZATION, 2011, 8 (03) :411-416
[7]  
Chartrand Gary., 1989, asopis P st. Mat, V114, P399
[8]   ON A POSET OF TREES [J].
Csikvari, Peter .
COMBINATORICA, 2010, 30 (02) :125-137
[9]  
Dankelmann P, 1996, J GRAPH THEOR, V22, P15, DOI 10.1002/(SICI)1097-0118(199605)22:1<15::AID-JGT3>3.0.CO
[10]  
2-O