Nanogenerators for Self-Powered Gas Sensing

被引:132
作者
Wen, Zhen [1 ,2 ]
Shen, Qingqing [1 ,2 ]
Sun, Xuhui [1 ,2 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
关键词
Nanogenerator; Self-powered; Gas sensing; Piezoelectric; Triboelectric; TO-MACHINE COMMUNICATIONS; CO3O4 NANOROD ARRAYS; HYBRID ENERGY CELL; TRIBOELECTRIC NANOGENERATOR; NANOARRAY NANOGENERATOR; NANOWIRE NANOGENERATOR; ACTIVE SENSORS; BLUE ENERGY; DRIVEN; PERFORMANCE;
D O I
10.1007/s40820-017-0146-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.
引用
收藏
页数:19
相关论文
共 109 条
[1]   Self powered pH sensor using piezoelectric composite worm structures derived by ionotropic gelation approach [J].
Alluri, Nagamalleswara Rao ;
Selvarajan, Sophia ;
Chandrasekhar, Arunkumar ;
Balasubramaniam, Saravanakumar ;
Jeong, Ji Hyun ;
Kim, Sang-Jae .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 237 :534-544
[2]   The Internet of Things: A survey [J].
Atzori, Luigi ;
Iera, Antonio ;
Morabito, Giacomo .
COMPUTER NETWORKS, 2010, 54 (15) :2787-2805
[3]   Internet of Things: Applications and Challenges in Technology and Standardization [J].
Bandyopadhyay, Debasis ;
Sen, Jaydip .
WIRELESS PERSONAL COMMUNICATIONS, 2011, 58 (01) :49-69
[4]   Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science [J].
Cao, Xia ;
Jie, Yang ;
Wang, Ning ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[5]   Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators [J].
Chen, Jun ;
Yang, Jin ;
Guo, Hengyu ;
Li, Zhaoling ;
Zheng, Li ;
Su, Yuanjie ;
Wen, Zhen ;
Fan, Xing ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (12) :12334-12343
[6]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[7]   Personalized Keystroke Dynamics for Self-Powered Human-Machine Interfacing [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Jin ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Weiqing ;
Qi, Xuewei ;
Su, Yuanjie ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (01) :105-116
[8]   Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator [J].
Chen, Shuwen ;
Gao, Caizhen ;
Tang, Wei ;
Zhu, Huarui ;
Han, Yu ;
Jiang, Qianwen ;
Li, Tao ;
Cao, Xia ;
Wang, Zhonglin .
NANO ENERGY, 2015, 14 :217-225
[9]   Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance [J].
Dai, Wen ;
Pan, Xinhua ;
Chen, Shanshan ;
Chen, Cong ;
Wen, Zhen ;
Zhang, Honghai ;
Ye, Zhizhen .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (23) :4606-4614
[10]   Toward Intelligent Machine-to-Machine Communications in Smart Grid [J].
Fadlullah, Zubair Md. ;
Fouda, Mostafa M. ;
Kato, Nei ;
Takeuchi, Akira ;
Iwasaki, Noboru ;
Nozaki, Yousuke .
IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (04) :60-65