ROMAN k-DOMINATION IN GRAPHS

被引:31
作者
Kaemmerling, Karsten [1 ]
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
domination; Roman k-domination; Roman domination; k-domination;
D O I
10.4134/JKMS.2009.46.6.1309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer, and let G be a simple graph with vertex set V(G). A Roman k-dominating function on G is a function f : V(G) -> {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v(1), v(2), ..., v(k) with f(v(i)) = 2 for i = 1, 2,..., k. The weight of a Roman k-dominating function is the value f(V(G)) = Sigma(u is an element of V(G)) f(u). The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number gamma(kR)(G) of G. Note that the Roman I-domination number gamma(1R)(G) is the usual Roman domination number gamma(R)(G). In this paper, we investigate the properties of the Roman k-domination number. Some of our results extend these one given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2] in 2004 for the Roman domination number.
引用
收藏
页码:1309 / 1318
页数:10
相关论文
共 9 条
[1]  
CHAMBERS EW, 2007, EXTREMAL PROBLEMS RO
[2]  
Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
[3]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[4]  
Fink J.F., 1985, Graph Theory with Applications to Algorithms and Computer Science, P283
[5]  
Haynes T. W., 1998, MONOGRAPHS TXB PURE, V208
[6]  
Haynes T. W., 1998, MONOGRAPHS TXB PURE, V209
[7]   Defendens imperium romanum: A classical problem in military strategy [J].
ReVelle, CS ;
Rosing, KE .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (07) :585-594
[8]   Defend the Roman Empire! [J].
Stewart, I .
SCIENTIFIC AMERICAN, 1999, 281 (06) :136-+
[9]  
VOLKMANN L, 2006, GRAPHEN ALLEN ECKEN, pR16