Joint Regularization of Phase and Amplitude of InSAR Data: Application to 3-D Reconstruction

被引:40
作者
Denis, Loic [2 ]
Tupin, Florence [1 ]
Darbon, Jerome [3 ]
Sigelle, Marc [1 ]
机构
[1] TELECOM ParisTech, Inst TELECOM, CNRS LTCI, F-75634 Paris, France
[2] CNRS, Lab Hubert Curien, F-42000 St Etienne, France
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2009年 / 47卷 / 11期
基金
美国国家科学基金会;
关键词
Denoising; Markov random field (MRF); minimization methods; speckle; synthetic aperture radar (SAR); total variation (TV); CONSTRAINED TOTAL VARIATION; MARKOV RANDOM-FIELD; IMAGE-RESTORATION; ENERGY MINIMIZATION; GRAPH; ALGORITHM; SAR; SEGMENTATION; OPTIMIZATION; EXTRACTION;
D O I
10.1109/TGRS.2009.2023668
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Interferometric synthetic aperture radar (SAR) images suffer from a strong noise, and their regularization is often a prerequisite for successful use of their information. Independently of the unwrapping problem, interferometric phase denoising is a difficult task due to shadows and discontinuities. In this paper, we propose to jointly filter phase and amplitude data in a Markovian framework. The regularization term is expressed by the minimization of the total variation and may combine different information (phase, amplitude, optical data). First, a fast and approximate optimization algorithm for vectorial data is briefly presented. Then, two applications are described. The first one is a direct application of this algorithm for 3-D reconstruction in urban areas with very high resolution images. The second one is an adaptation of this framework to the fusion of SAR and optical data. Results on aerial SAR images are presented.
引用
收藏
页码:3774 / 3785
页数:12
相关论文
共 45 条
[1]   Solving the convex cost integer dual network flow problem [J].
Ahuja, RK ;
Hochbaum, DS ;
Orlin, JB .
MANAGEMENT SCIENCE, 2003, 49 (07) :950-964
[2]  
[Anonymous], P CVPR WORKSH VIS CO
[3]  
[Anonymous], 2001, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations
[4]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[5]   Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context [J].
Bendjebbour, A ;
Delignon, Y ;
Fouque, L ;
Samson, V ;
Pieczynski, W .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1789-1798
[6]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[7]   Graph cuts via l1 norm minimization [J].
Bhusnurmath, Arvind ;
Taylor, Camillo J. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (10) :1866-1871
[8]   Absolute phase estimation: adaptive local denoising and global unwrapping [J].
Bioucas-Dias, Jose ;
Katkovnik, Vladimir ;
Astola, Jaakko ;
Egiazarian, Karen .
APPLIED OPTICS, 2008, 47 (29) :5358-5369
[9]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[10]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137