Effect of interfacial recombination, bulk recombination and carrier mobility on the J-V hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study

被引:36
作者
Xiang, Jin [1 ,2 ,3 ]
Li, Yana [1 ,3 ]
Huang, Feng [3 ,4 ]
Zhong, Dingyong [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Xingang Xi Rd 135, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Mat Sci & Engn, Xingang Xi Rd 135, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Xingang Xi Rd 135, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Sch Mat, Xingang Xi Rd 135, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL HALIDE PEROVSKITES; EXCITON BINDING-ENERGY; LIGHT-EMITTING-DIODES; EFFECTIVE MASSES; EFFICIENCY; METHYLAMMONIUM; MIGRATION; PERFORMANCE; LENGTHS; FILMS;
D O I
10.1039/c9cp03548f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In organic-inorganic hybrid perovskite solar cells, though the current density-voltage (J-V) hysteresis phenomenon is accepted to be caused by ion migration coupled with charge carrier recombination, there are still rich hysteresis characteristics (various J-V hysteresis loops) remaining to be explained. Here, a systematic drift-diffusion simulation study is conducted to explore the effect of interfacial recombination lifetime (tau(interface)), bulk charge carrier lifetime (tau(bulk)) and mobility (mu) on J-V hysteresis behaviors. The simulation results show that, for devices with only interfacial recombination, the decrease of tau(interface) will lead to J-V hysteresis loops with a large gap on the open circuit side. For devices with only bulk recombination, the drop of tau(bulk) will lead to J-V hysteresis loops with a large gap on the short circuit side. Meanwhile, in both cases, the decrease of mu aggravates the effect of interfacial and bulk recombination, while it has no effect on V-OC. Our simulations reveal the effect of decreased tau(interface), tau(bulk) and mu on the J-V characteristics and explain the hysteresis loops with specific shapes, which have been reported in the literature.
引用
收藏
页码:17836 / 17845
页数:10
相关论文
共 55 条
[1]   Organometal halide perovskite solar cells: degradation and stability [J].
Berhe, Taame Abraha ;
Su, Wei-Nien ;
Chen, Ching-Hsiang ;
Pan, Chun-Jern ;
Cheng, Ju-Hsiang ;
Chen, Hung-Ming ;
Tsai, Meng-Che ;
Chen, Liang-Yih ;
Dubale, Amare Aregahegn ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :323-356
[2]   Efficient luminescent solar cells based on tailored mixed-cation perovskites [J].
Bi, Dongqin ;
Tress, Wolfgang ;
Dar, M. Ibrahim ;
Gao, Peng ;
Luo, Jingshan ;
Renevier, Clementine ;
Schenk, Kurt ;
Abate, Antonio ;
Giordano, Fabrizio ;
Baena, Juan-Pablo Correa ;
Decoppet, Jean-David ;
Zakeeruddin, Shaik Mohammed ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Hagfeldt, Anders .
SCIENCE ADVANCES, 2016, 2 (01)
[3]   Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency [J].
Braly, Ian L. ;
deQilettes, Dane W. ;
Pazos-Outon, Luis M. ;
Burke, Sven ;
Ziffer, Mark E. ;
Ginger, David S. ;
Hillhouse, Hugh W. .
NATURE PHOTONICS, 2018, 12 (06) :355-+
[4]   Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer [J].
Cai, Feilong ;
Yang, Liyan ;
Yan, Yu ;
Zhang, Jinghui ;
Qin, Fei ;
Liu, Dan ;
Cheng, Yi-Bing ;
Zhou, Yinhua ;
Wang, Tao .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (19) :9402-9411
[5]   Identifying Dominant Recombination Mechanisms in Perovskite Solar Cells by Measuring the Transient Ideality Factor [J].
Calado, Phil ;
Burkitt, Dan ;
Yao, Jizhong ;
Troughton, Joel ;
Watson, Trystan M. ;
Carnie, Matt J. ;
Telford, Andrew M. ;
O'Regan, Brian C. ;
Nelson, Jenny ;
Barnes, Piers Rf .
PHYSICAL REVIEW APPLIED, 2019, 11 (04)
[6]   Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis [J].
Calado, Philip ;
Telford, Andrew M. ;
Bryant, Daniel ;
Li, Xiaoe ;
Nelson, Jenny ;
O'Regan, Brian C. ;
Barnes, Piers R. F. .
NATURE COMMUNICATIONS, 2016, 7
[7]   Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J].
Cao, Yu ;
Wang, Nana ;
Tian, He ;
Guo, Jingshu ;
Wei, Yingqiang ;
Chen, Hong ;
Miao, Yanfeng ;
Zou, Wei ;
Pan, Kang ;
He, Yarong ;
Cao, Hui ;
Ke, You ;
Xu, Mengmeng ;
Wang, Ying ;
Yang, Ming ;
Du, Kai ;
Fu, Zewu ;
Kong, Decheng ;
Dai, Daoxin ;
Jin, Yizheng ;
Li, Gongqiang ;
Li, Hai ;
Peng, Qiming ;
Wang, Jianpu ;
Huang, Wei .
NATURE, 2018, 562 (7726) :249-+
[8]   Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air [J].
Christians, Jeffrey A. ;
Miranda Herrera, Pierre A. ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) :1530-1538
[9]   Specific cation interactions as the cause of slow dynamics and hysteresis in dye and perovskite solar cells: a small-perturbation study [J].
Contreras, Lidia ;
Idigoras, Jesus ;
Todinova, Anna ;
Salado, Manuel ;
Kazim, Samrana ;
Ahmad, Shahzada ;
Anta, Juan A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (45) :31033-31042
[10]   How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model [J].
Courtier, Nicola E. ;
Cave, James M. ;
Foster, Jamie M. ;
Walker, Alison B. ;
Richardson, Giles .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) :396-409