A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm

被引:41
作者
Fathy, Ahmed [1 ,2 ]
Abdel Aleem, Shady H. E. [3 ]
Rezk, Hegazy [4 ,5 ]
机构
[1] Jouf Univ, Fac Engn, Elect Engn Dept, Sakaka, Saudi Arabia
[2] Zagazig Univ, Elect Power & Machine Dept, Fac Engn, Zagazig, Egypt
[3] 15th May Higher Inst Engn Math & Phys Sci, Cairo, Egypt
[4] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Addawaser, Al Kharj, Saudi Arabia
[5] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya, Egypt
关键词
Fuel cell; LSHADE‐ EpSin algorithm; optimization; parameter estimation; renewable energy; CUCKOO SEARCH ALGORITHM; RNA GENETIC ALGORITHM; DIFFERENTIAL EVOLUTION; MODEL; IDENTIFICATION; EXTRACTION; EFFICIENCY; MECHANISM; STRATEGY; SYSTEMS;
D O I
10.1002/er.6282
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Among the various fuel cell types, proton exchange membrane fuel cells (PEMFCs) have prominent characteristics that make them unique in applications. However, the preciseness of results of a PEMFC model depends on the availability of the parameters, which are missing in the datasheets provided by the manufacturers and vendors, and this explains why it becomes convenient to estimate such parameters for a complete and precise PEMFC model that closely matches the experimental measures under different operation conditions. In this work, a novel solution methodology based on applying an ensemble sinusoidal parameter adaptation incorporated with L-SHADE, called LSHADE-EpSin optimization algorithm, is proposed to solve the PEMFC parameter extraction problem. The proposed methodology is applied to four commercial PEMFCs: 250 W PEMFC; NedStack PS6, 6 kW; BCS 500 W; and SR-12500 W, and the results obtained are compared with the results obtained by using other recent optimization algorithms. Furthermore, several statistical tests were performed to validate the proposed model's performance and compare between the investigated algorithms. The results show the effectiveness of the approach proposed using the LSHADE-EpSin algorithm in estimating the optimal PEMFC parameters under different operating conditions compared to the other optimizers for the four studied stacks.
引用
收藏
页码:6922 / 6942
页数:21
相关论文
共 65 条
[1]   Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer [J].
Agwa, Ahmed M. ;
El-Fergany, Attia A. ;
Sarhan, Gamal M. .
ENERGIES, 2019, 12 (10)
[2]   Harmonic Overloading Minimization of Frequency-Dependent Components in Harmonics Polluted Distribution Systems Using Harris Hawks Optimization Algorithm [J].
Aleem, Shady H. E. Abdel ;
Zobaa, Ahmed F. ;
Balci, Murat E. ;
Ismael, Sherif M. .
IEEE ACCESS, 2019, 7 :100824-100837
[3]  
Ramos-Paja CA, 2010, IEEE INT SYMP CIRC S, P2199, DOI 10.1109/ISCAS.2010.5537201
[4]   A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estimation and Power-Electronics Interaction [J].
Andres Ramos-Paja, Carlos ;
Giral, Roberto ;
Martinez-Salamero, Luis ;
Romano, Jenny ;
Romero, Alfonso ;
Spagnuolo, Giovanni .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (06) :1914-1924
[5]   A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (21) :11165-11174
[6]   An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (09) :3473-3480
[7]   Optimization of PEMFC model parameters with a modified particle swarm optimization [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1258-1265
[8]  
Avelar HJ, 2009, IEEE EL POW EN C, P1
[9]  
Awad N.H., 2014, Cong. Evolution. Comput., P2958, DOI 10.1109/CEC.2016.7744163
[10]   Distribution Network Reconfiguration together with Distributed Generator and Shunt Capacitor allocation for Loss Minimization [J].
Biswas, Partha P. ;
Suganthan, P. N. ;
Amaratunga, Gehan A. J. .
2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, :1857-1863