Inverse Free Universum Twin Support Vector Machine

被引:0
作者
Moosaei, Hossein [1 ,2 ]
Hladik, Milan [2 ]
机构
[1] Univ Bojnord, Dept Math, Fac Sci, Bojnord, Iran
[2] Charles Univ Prague, Dept Appl Math, Fac Math & Phys, Prague, Czech Republic
来源
LEARNING AND INTELLIGENT OPTIMIZATION, LION 15 | 2021年 / 12931卷
关键词
Support vector machine; Twin SVM; Universum data; U-SVM; U-TSVM; CLASSIFICATION;
D O I
10.1007/978-3-030-92121-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Universum twin support vector machine (U-TSVM) is an efficient method for binary classification problems. In this paper, we improve the U-TSVM algorithm and propose an improved Universum twin bounded support vector machine (named as IUTBSVM). Indeed, by introducing a different Lagrangian function for the primal problems, we obtain new dual formulations so that we do not need to compute inverse matrices. Also to reduce the computational time of the proposed method, we suggest smaller size of the rectangular kernel matrices than the other methods. Numerical experiments on several UCI benchmark data sets indicate that the IUTBSVM is more efficient than the other three algorithms, namely U-SVM, TSVM, and U-TSVM in sense of the classification accuracy.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 24 条
[1]   Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm [J].
Arabasadi, Zeinab ;
Alizadehsani, Roohallah ;
Roshanzamir, Mohamad ;
Moosaei, Hossein ;
Yarifard, Ali Asghar .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 141 :19-26
[2]   DC programming and DCA for parametric-margin ν-support vector machine [J].
Bazikar, Fatemeh ;
Ketabchi, Saeed ;
Moosaei, Hossein .
APPLIED INTELLIGENCE, 2020, 50 (06) :1763-1774
[3]   Application of SVM to predict membrane protein types [J].
Cai, YD ;
Ricardo, PW ;
Jen, CH ;
Chou, KC .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 226 (04) :373-376
[4]  
Cherkassky V, 2007, LEARNING DATA CONCEP
[5]  
Dua D., 2017, UCI Machine Learning Repository
[6]  
Hsu Chihwei, 2003, A practical guide to support vector classification
[7]   Twin support vector machines for pattern classification [J].
Jayadeva ;
Khemchandani, R. ;
Chandra, Suresh .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (05) :905-910
[8]  
Ketabchi S, 2019, ANN OPER RES, V276, P155, DOI 10.1007/s10479-017-2724-8
[9]   Semi-Supervised Text Classification With Universum Learning [J].
Liu, Chien-Liang ;
Hsaio, Wen-Hoar ;
Lee, Chia-Hoang ;
Chang, Tao-Hsing ;
Kuo, Tsung-Hsun .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) :462-473
[10]   Multisurface proximal support vector machine classification via generalized eigenvalues [J].
Mangasarian, OL ;
Wild, EW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) :69-74