Lesche stability of κ-entropy

被引:39
作者
Kaniadakis, G
Scarfone, AM
机构
[1] Politecn Torino, Dipartimento Fis, Ist Nazl Fis Mat, I-10129 Turin, Italy
[2] Univ Cagliari, Dipartimento Fis, Ist Nazl Fis Nucl, I-09042 Cagliari, Italy
关键词
generalized entropies; Lesche stability;
D O I
10.1016/j.physa.2004.03.083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lesche stability condition for the Shannon entropy (J. Stat. Phys. 27 (1982) 419), represents a fundamental test, for its experimental robustness, for systems obeying the Maxwell-Boltzmann statistical mechanics. Of course, this stability condition must be satisfied by any entropic functional candidate to generate non-conventional statistical mechanics. In the present effort we show that the kappa-entropy, recently introduced in literature (Phys. Rev. E 66 (2002) 056125), satisfies the Lesche stability condition. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 15 条
[1]   Generalized entropy optimized by a given arbitrary distribution [J].
Abe, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (33) :8733-8738
[2]   Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:: A basis for q-exponential distributions -: art. no. 046134 [J].
Abe, S .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[3]   A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics [J].
Abe, S .
PHYSICS LETTERS A, 1997, 224 (06) :326-330
[4]  
ABE S, 2001, LECT NOTES PHYS, V560
[5]   Statistical mechanics in the context of special relativity [J].
Kaniadakis, G .
PHYSICAL REVIEW E, 2002, 66 (05) :17-056125
[6]   Non-linear kinetics underlying generalized statistics [J].
Kaniadakis, G .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 296 (3-4) :405-425
[7]  
KANIADAKIS G, 2002, PHYSICA A, V305
[8]   Distributions and channel capacities in generalized statistical mechanics [J].
Landsberg, PT ;
Vedral, V .
PHYSICS LETTERS A, 1998, 247 (03) :211-217
[9]   INSTABILITIES OF RENYI ENTROPIES [J].
LESCHE, B .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (02) :419-422
[10]   Deformed exponentials and logarithms in generalized thermostatistics [J].
Naudts, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 316 (1-4) :323-334