Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode

被引:30
作者
Chiou, Tzung-Wen [1 ]
Lu, Tsai-Te [2 ]
Wu, Ying-Hao [1 ]
Yu, Yi-Ju [1 ]
Chu, Li-Kang [1 ]
Liaw, Wen-Feng [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan
[2] Chung Yuan Christian Univ, Dept Chem, Taoyuan 32023, Taiwan
关键词
electrocatalysis; hydrogen; iron; nitric oxide; water reduction; GENERATING HYDROGEN; WATER-OXIDATION; CARBON NANOTUBES; HIGH-PERFORMANCE; HYBRID CATALYST; H-2; PRODUCTION; NEUTRAL WATER; COBALT; DNICS; REDUCTION;
D O I
10.1002/anie.201508351
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite extensive efforts, the electrocatalytic reduction of water using homogeneous/heterogeneous Fe, Co, Ni, Cu, W, and Mo complexes remains challenging because of issues involving the development of efficient, recyclable, stable, and aqueous-compatible catalysts. In this study, evolution of the de novo designed dinitrosyl iron complex DNIC-PMDTA from a molecular catalyst into a solid-state hydrogen evolution cathode, considering all the parameters to fulfill the electronic and structural requirements of each step of the catalytic cycle, is demonstrated. DNIC-PMDTA reveals electrocatalytic reduction of water at neutral and basic media, whereas its deposit on electrode preserves exceptional longevity, 139 h. This discovery will initiate a systematic study on the assembly of [Fe(NO)(2)] motif into current collector for mass production of H-2, whereas the efficiency remains tailored by its molecular precursor [(L) Fe(NO)(2)].
引用
收藏
页码:14824 / 14829
页数:6
相关论文
共 61 条
[1]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[2]  
[Anonymous], 2015, ANGEW CHEM INT EDIT
[3]  
[Anonymous], 2015, ANGEW CHEM
[4]   Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors [J].
Blakemore, James D. ;
Mara, Michael W. ;
Kushner-Lenhoff, Maxwell N. ;
Schley, Nathan D. ;
Konezny, Steven J. ;
Rivalta, Ivan ;
Negre, Christian F. A. ;
Snoeberger, Robert C. ;
Kokhan, Oleksandr ;
Huang, Jier ;
Stickrath, Andrew ;
Lan Anh Tran ;
Parr, Maria L. ;
Chen, Lin X. ;
Tiede, David M. ;
Batista, Victor S. ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
INORGANIC CHEMISTRY, 2013, 52 (04) :1860-1871
[5]   Direct electrochemistry of Megasphaera elsdenii iron hydrogenase - Definition of the enzyme's catalytic operating potential and quantitation of the catalytic behaviour over a continuous potential range [J].
Butt, JN ;
Filipiak, M ;
Hagen, WR .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 245 (01) :116-122
[6]   A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential [J].
Chen, Lin ;
Wang, Mei ;
Han, Kai ;
Zhang, Peili ;
Gloaguen, Frederic ;
Sun, Licheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :329-334
[7]  
Cobo S, 2012, NAT MATER, V11, P802, DOI [10.1038/NMAT3385, 10.1038/nmat3385]
[8]   Nickel Complexes for Robust Light-Driven and Electrocatalytic Hydrogen Production from Water [J].
Das, Amit ;
Han, Zhiji ;
Brennessel, William W. ;
Holland, Patrick L. ;
Eisenberg, Richard .
ACS CATALYSIS, 2015, 5 (03) :1397-1406
[9]   Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges [J].
Du, Pingwu ;
Eisenberg, Richard .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :6012-6021
[10]   Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting [J].
Du, Shichao ;
Ren, Zhiyu ;
Zhang, Jun ;
Wu, Jun ;
Xi, Wang ;
Zhu, Jiaqing ;
Fu, Honggang .
CHEMICAL COMMUNICATIONS, 2015, 51 (38) :8066-8069