A convergent finite-difference method for a nonlinear variational wave equation

被引:13
作者
Holden, H. [1 ,2 ]
Karlsen, K. H. [2 ]
Risebro, N. H. [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
[2] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway
关键词
variational wave equation; convergence of finite-difference schemes; liquid crystals; RAREFACTIVE SOLUTIONS; WEAK SOLUTIONS;
D O I
10.1093/imanum/drn026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish rigorously convergence of a semidiscrete upwind scheme for the nonlinear variational wave equation u(tt) - c(u)(c(u)u(x))(x) = 0 with u vertical bar(t= 0) = u(0) and u(t)vertical bar(t=0) = upsilon(0). Introducing Riemann invariants R = u(t) + cu(x) and S = u(t) - cu(x), the variational wave equation is equivalent to R-t - cR(x) = (c) over tilde (R-2 - S-2) and S-t + cS(x) = -(c) over tilde (R-2 - S-2) with (c) over tilde = c'/(4c). An upwind scheme is defined for this system. We assume that the speed c is positive, increasing and both c and its derivative are bounded away from zero and that R vertical bar(t=0), S vertical bar(t=0) is an element of L-1(R) boolean AND L-3(R) are nonpositive. The numerical scheme is illustrated on several examples.
引用
收藏
页码:539 / 572
页数:34
相关论文
共 17 条
  • [1] [Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
  • [2] Conservative solutions to a nonlinear variational wave equation
    Bressan, Alberto
    Zheng, Yuxi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) : 471 - 497
  • [3] ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES
    DIPERNA, RJ
    LIONS, PL
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (03) : 511 - 547
  • [4] Evans LC., 2002, PARTIAL DIFFERENTIAL
  • [5] Feireisl E., 2004, Dynamics of Viscous Compressible Fluids
  • [6] Singularities of a variational wave equation
    Glassey, RT
    Hunter, JK
    Zheng, YX
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (01) : 49 - 78
  • [7] GLASSEY RT, 1997, SINGULARITIES OSCILL, P37
  • [8] Convergent difference schemes for the Hunter-Saxton equation
    Holden, H.
    Karlsen, K. H.
    Risebro, N. H.
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 699 - 744
  • [9] DYNAMICS OF DIRECTOR FIELDS
    HUNTER, JK
    SAXTON, R
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (06) : 1498 - 1521
  • [10] Malek J, 1996, Applied Mathematics and Mathematical Computations