AN APPLICATION OF GENERALIZED MOLLIFIERS TO THE RIEMANN ZETA-FUNCTION

被引:4
作者
Sono, Keiju [1 ]
机构
[1] Ehime Univ, Matsuyama, Ehime, Japan
基金
日本学术振兴会;
关键词
Riemann zeta-function; mollifier method; critical zeros; ZEROS;
D O I
10.2206/kyushujm.72.35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the asymptotic formula for the second moment of the Riemann zeta-function twisted by a (Lambda + 1)-piece mollifier which is a generalization of the two-piece mollifier considered by Bui, Conrey and Young [Acta. Arith. 150(1) (2011), 35-64]. As an application, we obtain a lower bound for the proportion of critical zeros of the Riemann zeta-function.
引用
收藏
页码:35 / 69
页数:35
相关论文
共 11 条
[1]   More than 41% of the zeros of the zeta function are on the critical line [J].
Bui, H. M. ;
Conrey, Brian ;
Young, Matthew P. .
ACTA ARITHMETICA, 2011, 150 (01) :35-64
[2]   MORE THAN 2/5 OF THE ZEROS OF THE RIEMANN ZETA-FUNCTION ARE ON THE CRITICAL LINE [J].
CONREY, JB .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 399 :1-26
[3]   POWER MEAN-VALUES FOR DIRICHLET POLYNOMIALS AND THE RIEMANN ZETA-FUNCTION .2. [J].
DESHOUILLERS, JM ;
IWANIEC, H .
ACTA ARITHMETICA, 1984, 43 (03) :305-312
[4]   KLOOSTERMAN SUMS AND FOURIER COEFFICIENTS OF CUSP FORMS [J].
DESHOUILLERS, JM ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1982, 70 (02) :219-288
[5]   Zeros of the Riemann zeta function on the critical line [J].
Feng, Shaoji .
JOURNAL OF NUMBER THEORY, 2012, 132 (04) :511-542
[6]  
Iwaniec H., 2014, UNIVERSITY LECTURE S, V62
[7]  
Kuhn P., 2016, PREPRINT
[8]   MORE THAN ONE THIRD OF ZEROS OF RIEMANNS ZETA-FUNCTION ARE ON SIGMA = 1-2 [J].
LEVINSON, N .
ADVANCES IN MATHEMATICS, 1974, 13 (04) :383-436
[9]   Twisted second moments of the Riemann zeta-function and applications [J].
Robles, Nicolas ;
Roy, Arindam ;
Zaharescu, Alexandru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) :271-314
[10]  
Selberg A., 1942, SKR NORSKE VID AKAD, V10, P1