On Deligne's category (Rep) under barab (Sd)

被引:20
作者
Comes, Jonathan [1 ]
Ostrik, Victor [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
tensor categories; symmetric group;
D O I
10.2140/ant.2014.8.473
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a universal property of Deligne's category (Rep) under bar(ab) (S-d). Along the way, we classify tensor ideals in the category (Rep) under bar (S-d).
引用
收藏
页码:473 / 496
页数:24
相关论文
共 11 条
[1]   REPRESENTATIONS OF QUANTUM ALGEBRAS [J].
ANDERSEN, HH ;
POLO, P ;
KEXIN, W .
INVENTIONES MATHEMATICAE, 1991, 104 (01) :1-59
[2]   TENSOR-PRODUCTS OF QUANTIZED TILTING MODULES [J].
ANDERSEN, HH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :149-159
[3]  
BAKALOV B, 2001, U LECT SER AM MATH S, V21
[4]  
Beilinson A. A., 1982, ASTERISQUE, VI, P5
[5]   On blocks of Deligne's category Rep(St) [J].
Comes, Jonathan ;
Ostrik, Victor .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1331-1377
[6]  
Deligne P., 1990, Birkhauser, V87, P111, DOI [10.1007/978-0-8176-4575-53, 10, DOI 10.1007/978-0-8176-4575-53]
[7]  
Deligne P., 2007, Tata Inst. Fund. Res. Studies Math, P209
[8]   A magnetic model with a possible Chern-Simons phase [J].
Freedman, MH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (01) :129-183
[9]  
Kashiwara M., 2006, GRUND MATH WISS, V332
[10]   Module categories over representations of SLq(2) in the non-semisimple case [J].
Ostrik, Victor .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 17 (06) :2005-2017