Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability

被引:714
作者
Liu, Tianyu [1 ]
Finn, Lauren [1 ]
Yu, Minghao [2 ]
Wang, Hanyu [1 ]
Zhai, Teng [1 ,2 ]
Lu, Xihong [2 ]
Tong, Yexiang [2 ]
Li, Yat [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Sun Yat Sen Univ, Sch Chem & Chem Engn, MOE Key Lab Bioinorgan & Synthet Chem, KLGHEI Environm & Energy Chem, Guangzhou 510275, Guangdong, Peoples R China
关键词
Polyaniline; polypyrrole; cycling stability; carbonaceous shell; pseudocapacitor; HIGH-PERFORMANCE; HIERARCHICAL MNO2; COMPOSITE PAPER; SUPERCAPACITOR; NANOWIRES; NANOPARTICLES; CAPACITANCE; NANOSHEETS; ANODE;
D O I
10.1021/nl500255v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conducting polymers such as polyaniline and polypyrrole have been widely used as pseudocapacitive electrode materials for supercapacitors. However, their structural instability resulting from repeated volumetric swelling and shrinking during charge/discharge process has been a major hurdle for their practical applications. This work demonstrates a simple and general strategy to substantially enhance the cycling stability of conductive polymer electrodes by deposition of a thin carbonaceous shell onto their surface. Significantly, carbonaceous shell-coated polyaniline and polypyrrole electrodes achieved remarkable capacitance retentions of similar to 95 and similar to 85% after 10 000 cycles. Electron microscopy studies revealed that the presence of similar to 5 nm thick carbonaceous shell can effective prevent the structural breakdown of polymer electrodes during charge/discharge process. Importantly, the polymer electrodes with a similar to 5 nm thick carbonaceous shell exhibited comparable specific capacitance and pseudocapacitive behavior as the bare polymer electrodes. We anticipate that the same strategy can be applied for stabilizing other polymer electrode materials. The capability of fabricating stable polymer electrodes could open up new opportunities for pseudocapacitive devices.
引用
收藏
页码:2522 / 2527
页数:6
相关论文
共 45 条
[1]   Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing [J].
Al-Mashat, Laith ;
Debiemme-Chouvy, Catherine ;
Borensztajn, Stephan ;
Wlodarski, Wojtek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (24) :13388-13394
[2]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[3]   Self-doped polyaniline on functionalized carbon cloth as electroactive materials for supercapacitor [J].
Bian, Li-Jun ;
Luan, Feng ;
Liu, Sha-Sha ;
Liu, Xiao-Xia .
ELECTROCHIMICA ACTA, 2012, 64 :17-22
[4]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[5]   Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles [J].
Chen, Liang ;
Sun, Li-Jie ;
Luan, Feng ;
Liang, Ying ;
Li, Yat ;
Liu, Xiao-Xia .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3742-3747
[6]   Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors [J].
Chen, S. ;
Zhitomirsky, I. .
JOURNAL OF POWER SOURCES, 2013, 243 :865-871
[7]   Enhanced Electrochemical Performance of Highly Porous Supercapacitor Electrodes Based on Solution Processed Polyaniline Thin Films [J].
Cho, Sunghun ;
Shin, Kyoung-Hwan ;
Jang, Jyongsik .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (18) :9186-9193
[8]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[9]   Self-Limiting Electrodeposition of Hierarchical MnO2 and M(OH)2/MnO2 Nanofibril/Nanowires: Mechanism and Supercapacitor Properties [J].
Duay, Jonathon ;
Sherrill, Stefanie A. ;
Gui, Zhe ;
Gillette, Eleanor ;
Lee, Sang Bok .
ACS NANO, 2013, 7 (02) :1200-1214
[10]   High-performance polypyrrole electrode materials for redox supercapacitors [J].
Fan, Li-Zhen ;
Maier, Joachim .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (06) :937-940