Brillouin zone labelling for quasicrystals

被引:16
作者
Gambaudo, Jean-Marc [1 ]
Vignolo, Patrizia [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, Inst Non Lineaire Nice, F-06560 Valbonne, France
关键词
quasicrystals; band structure; Brillouin zones; STATES;
D O I
10.1088/1367-2630/16/4/043013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme to determine the energy-band dispersion of quasicrystals that does not require any periodic approximation and directly provides the correct structure of the extended Brillouin zones. From the gap labelling viewpoint, this allows us to transpose the measurement of the integrated density of states with that of the effective Brillouin zone areas, which are uniquely determined by the position of the Bragg peaks. Moreover, we show that the Bragg vectors can be determined by stability analysis of the law of recurrence used to generate the quasicrystal. Our analysis of gap labelling in the quasimomentum space opens the way to experimental proof of gap labelling itself within the framework of optics experiments, polaritons, or with ultracold atoms.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Harnessing Optical Vortex Lattices in Nematic Liquid Crystals [J].
Barboza, R. ;
Bortolozzo, U. ;
Assanto, G. ;
Vidal-Henriquez, E. ;
Clerc, M. G. ;
Residori, S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[2]   Geometric theory of unimodular Pisot substitutions [J].
Barge, Marcy ;
Kwapisz, Jaroslaw .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (05) :1219-1282
[3]   Topological Transition of Dirac Points in a Microwave Experiment [J].
Bellec, Matthieu ;
Kuhl, Ulrich ;
Montambaux, Gilles ;
Mortessagne, Fabrice .
PHYSICAL REVIEW LETTERS, 2013, 110 (03)
[4]  
Bellissard J, 2006, COMMUN MATH PHYS, V261, P1, DOI 10.1007/s00220-005-l445-z
[5]  
Bellissard J., 1993, From Number Theory to Physics. Les Houches March, V89, P538
[6]  
Benameur MT, 2003, OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, CONFERENCE PROCEEDINGS, P11
[7]   Natural Quasicrystals [J].
Bindi, Luca ;
Steinhardt, Paul J. ;
Yao, Nan ;
Lu, Peter J. .
SCIENCE, 2009, 324 (5932) :1306-1309
[8]   Quantum criticality in disordered bosonic optical lattices [J].
Cai, Xiaoming ;
Chen, Shu ;
Wang, Yupeng .
PHYSICAL REVIEW A, 2011, 83 (04)
[9]   SPECTRAL THEORY AND X-RAY-DIFFRACTION [J].
DWORKIN, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2965-2967
[10]   INDEXING PROBLEMS IN QUASICRYSTAL DIFFRACTION [J].
ELSER, V .
PHYSICAL REVIEW B, 1985, 32 (08) :4892-4898