Delay-dependent guaranteed cost control for uncertain systems with state and input delays

被引:28
作者
Xu, S. [1 ]
Lam, J.
Zou, Y.
机构
[1] Nanjing Univ Sci & Technol, Dept Automat, Nanjing 210094, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
来源
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS | 2006年 / 153卷 / 03期
关键词
D O I
10.1049/ip-cta:20045191
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors deal with the problem of delay-dependent guaranteed cost control for uncertain linear systems with time-varying delays in both the state and the input. The purpose of this is to design state-feedback controllers such that the resulting closed-loop system is robustly stable, and a specified linear integral-quadratic cost function has an upper bound for all delays in the given intervals. Two types of the time-varying delays are considered. Delay-dependent sufficient conditions for the solvability of the problem are developed in terms of matrix inequalities. By the cone complementary linearisation method, desired state-feedback controllers can be constructed. A numerical example is provided to demonstrate the applicability of the proposed method.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 22 条
[1]   ON COMPUTING THE MAXIMAL DELAY INTERVALS FOR STABILITY OF LINEAR DELAY SYSTEMS [J].
CHEN, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (06) :1087-1093
[2]   MEMORYLESS H-INFINITY, CONTROLLER-DESIGN FOR LINEAR-SYSTEMS WITH DELAYED STATE AND CONTROL [J].
CHOI, HH ;
CHUNG, MJ .
AUTOMATICA, 1995, 31 (06) :917-919
[3]  
Dugard L, 1997, Stability and Control of Time Delay Systems, V228
[4]   A cone complementarity linearization algorithm for static output-feedback and related problems [J].
ElGhaoui, L ;
Oustry, F ;
AitRami, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1171-1176
[5]   LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems [J].
Esfahani, SH ;
Moheimani, SOR ;
Petersen, IR .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06) :491-498
[6]  
Esfahani SH, 2000, INT J ROBUST NONLIN, V10, P157, DOI 10.1002/(SICI)1099-1239(200003)10:3<157::AID-RNC484>3.0.CO
[7]  
2-K
[8]  
Fattouh A, 1998, IEEE DECIS CONTR P, P4545, DOI 10.1109/CDC.1998.762040
[9]  
Hale J. K., 1977, Applied Mathematical Sciences, V3
[10]  
Jeung ET, 1998, IEEE T AUTOMAT CONTR, V43, P971, DOI 10.1109/9.701103