Analysis of Nb3Sn Accelerator Magnet Training

被引:13
作者
Stoynev, Stoyan [1 ]
Riemer, Kevin [1 ]
Zlobin, Alexander, V [1 ]
Ambrosio, Giorgio [1 ]
Ferracin, Paolo [2 ]
Sabbi, GianLuca [3 ]
Wanderer, Peter [4 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[2] European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Brookhaven Natl Lab, Upton, NY 11973 USA
关键词
Nb3Sn accelerator magnets; superconducting coils; superconducting magnet training; quench performance;
D O I
10.1109/TASC.2019.2895554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nb3Sn accelerator magnet technology has made significant progress during the past decades. For the first time, it is planned to be used in a real accelerator. A relatively small number of Nb3Sn quadrupoles and dipoles will be installed in the Large Hadron Collider (LHC) to increase machine luminosity. Although it will prove the possibility of using Nb3Sn magnets in real machines, many questions of scaling this technology up remain. One of them is related to slow training of Nb3Sn magnets compared to the traditional Nb-Ti accelerator magnets. Since the goal is to operate thousands of Nb3Sn magnets in a future post-LHC accelerator, the slow training will affect both the practical design margin and the nominal operation field. Consequently, the cost of the project to reach the design field level is also increased. To improve our understanding of slow magnet training the existing Fermilah data from Nb3Sn magnet tests were reanalyzed. A summary of coil training features and correlations with fabrication parameters observed is presented in this paper.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Ambrosio G., 2016, FERMILABTM2660TD
[2]  
Ambrosio G., 2015, IEEE T APPL SUPERCON, V25
[3]  
[Anonymous], 2011, P 2011 PART ACC C NE
[4]   Fabrication of a Third Generation of Nb3Sn Coils for the LARP HQ03 Quadrupole Magnet [J].
Borgnolutti, F. ;
Ambrosio, G. ;
Bossert, R. ;
Chlachidze, G. ;
Cheng, D. W. ;
Dietderich, D. R. ;
Felice, H. ;
Godeke, A. ;
Hafalia, A. R. ;
Marchevsky, M. ;
Sabbi, G. L. ;
Schmalzle, J. ;
Wanderer, P. ;
Yu, M. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
[5]  
Bossert R, 2008, AIP CONF PROC, V986, P161
[6]   Development and test of LARP technological quadrupole models of TQC series [J].
Bossert, R. C. ;
Ambrosio, G. ;
Andreev, N. ;
Barzi, E. ;
Caspi, S. ;
Chlachidze, G. ;
Dietderich, D. T. ;
Feher, S. ;
Ferracin, P. ;
Ghosh, A. ;
Hafalia, A. R. ;
Kashikhin, V. S. ;
Kashikhin, V. V. ;
Lamm, M. J. ;
Nobrega, F. ;
Novitski, I. ;
Orris, D. ;
Sabbi, G. L. ;
Taitaglia, M. ;
Zlobin, A. V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2008, 18 (02) :175-178
[7]   Advanced Accelerator Magnets for Upgrading the LHC [J].
Bottura, Luca ;
de Rijk, Gijs ;
Rossi, Lucio ;
Todesco, Ezio .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
[8]   Statistical analysis of conductor motion in LHC superconducting dipole magnets [J].
Calvi, A ;
Ponomarev, N ;
Pugnat, P ;
Siemko, A .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2004, 14 (02) :223-226
[9]  
Chlaachidze G., 2015, TD15018 FERM
[10]   Performance of HQ02, an Optimized Version of the 120 mm Nb3Sn LARP Quadrupole [J].
Chlachidze, G. ;
Ambrosio, G. ;
Anerella, M. ;
Borgnolutti, F. ;
Bossert, R. ;
Caspi, S. ;
Cheng, D. W. ;
Dietderich, D. ;
Felice, H. ;
Ferracin, P. ;
Ghosh, A. ;
Godeke, A. ;
Hafalia, A. R. ;
Marchevsky, M. ;
Orris, D. ;
Roy, P. K. ;
Sabbi, G. L. ;
Salmi, T. ;
Schmalzle, J. ;
Sylvester, C. ;
Tartaglia, M. ;
Tompkins, J. ;
Wanderer, P. ;
Wang, X. R. ;
Zlobin, A. V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (03)