Probabilistic Query Answering in the Bayesian Description Logic BEL

被引:14
|
作者
Ceylan, Ismail Ilkan [1 ]
Penaloza, Rafael [2 ]
机构
[1] Tech Univ Dresden, Theoret Comp Sci, Dresden, Germany
[2] Free Univ Bozen Bolzano, KRDB Res Ctr, Bolzano, Italy
来源
SCALABLE UNCERTAINTY MANAGEMENT (SUM 2015) | 2015年 / 9310卷
关键词
INFORMATION;
D O I
10.1007/978-3-319-23540-0_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
BEL is a probabilistic description logic (DL) that extends the light-weight DL EL with a joint probability distribution over the axioms, expressed with the help of a Bayesian network (BN). In recent work it has been shown that the complexity of standard logical reasoning in BEL is the same as performing probabilistic inferences over the BN. In this paper we consider conjunctive query answering in BEL. We study the complexity of the three main problems associated to this setting: computing the probability of a query entailment, computing the most probable answers to a query, and computing the most probable context in which a query is entailed. In particular, we show that all these problems are tractable w.r.t. data and ontology complexity.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [21] Lifted Query Answering in Gaussian Bayesian Networks
    Hartwig, Mattis
    Moeller, Ralf
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 233 - 244
  • [22] Data Complexity of Query Answering in Description Logics
    Calvanese, D.
    De Giacomo, G.
    Lembo, D.
    Lenzerini, M.
    Rosati, R.
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4163 - 4167
  • [23] Data complexity of query answering in description logics
    Calvanese, Diego
    De Giacomo, Giuseppe
    Lembo, Domenico
    Lenzerini, Maurizio
    Rosati, Riccardo
    ARTIFICIAL INTELLIGENCE, 2013, 195 : 335 - 360
  • [24] Query Answering in Description Logics with Transitive Roles
    Eiter, Thomas
    Lutz, Carsten
    Ortiz, Magdalena
    Simkus, Mantas
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 759 - 764
  • [25] Query Answering in Description Logics: The Knots Approach
    Eiter, Thomas
    Lutz, Carsten
    Ortiz, Magdalena
    Simkus, Mantas
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2009, 5514 : 26 - +
  • [26] Controlled query evaluation in description logics through consistent query answering
    Cima, Gianluca
    Lembo, Domenico
    Rosati, Riccardo
    Savo, Domenico Fabio
    ARTIFICIAL INTELLIGENCE, 2024, 334
  • [27] Approximate Probabilistic Query Answering over Inconsistent Databases
    Greco, Sergio
    Molinaro, Cristian
    Conceptual Modeling - ER 2008, Proceedings, 2008, 5231 : 311 - 325
  • [28] Extension calculus and query answering in prioritized default logic
    Benhammadi, F
    Nicolas, P
    Schaub, T
    ARTIFICIAL INTELLIGENCE: METHODOLOGY SYSTEMS AND APPLICATIONS, 1998, 1480 : 76 - 87
  • [29] Query answering in normal logic programs under uncertainty
    Straccia, U
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 687 - 700
  • [30] Objective Bayesian probabilistic logic
    Williamson, Jon
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2008, 63 (04): : 167 - 183