Oscillation of linear ordinary differential equations: On a theorem of A. Grigoriev

被引:3
作者
Yakovenko, S [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
关键词
linear ordinary differential equations; disconjugacy; singular perturbations;
D O I
10.1007/s10450-006-0008-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a simplified proof and an improvement of a recent theorem of A. Grigoriev, placing an upper bound for the number of roots of linear combinations of solutions of systems of linear equations with polynomial or rational coefficients.
引用
收藏
页码:433 / 449
页数:17
相关论文
共 16 条
[1]  
Basu S., 2003, Algorithms Comput. Math., V10
[2]  
De La Vallee Poussin C. J., 1929, J MATH PURE APPL, V8, P125
[3]   SOLVING SYSTEMS OF POLYNOMIAL INEQUALITIES IN SUBEXPONENTIAL TIME [J].
GRIGOREV, DY ;
VOROBJOV, NN .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) :37-64
[4]  
Grigoriev A., 2001, THESIS WEIZMANN I SC
[5]  
GRIGORIEV A, MATHDS0305248
[6]   COMPLEXITY OF THE TARSKI-SEIDENBERG PRINCIPLE [J].
HEINTZ, J ;
ROY, MF ;
SOLERNO, P .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (01) :101-126
[7]   Counting real zeros of analytic functions satisfying linear ordinary differential equations [J].
IlYashenko, Y ;
Yakovenko, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (01) :87-105
[8]  
LEVIN BY, 1980, T MAHT MONOGR, V5
[9]  
MILNOR J, 1968, ANN MATH STUD, V61
[10]   Redundant Picard-Fuchs system for Abelian integrals [J].
Novikov, D ;
Yakovenko, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (02) :267-306