Particle swarm optimization with adaptive mutation for multimodal optimization

被引:63
作者
Wang, Hui [1 ]
Wang, Wenjun [2 ]
Wu, Zhijian [3 ]
机构
[1] Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Peoples R China
[2] Nanchang Inst Technol, Sch Business Adm, Nanchang 330099, Peoples R China
[3] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 国家教育部科学基金资助;
关键词
Particle swarm optimization (PSO); Adaptive mutation; Multimodal optimization; Global optimization; GLOBAL OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.amc.2013.06.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Particle swarm optimization (PSO) is a population-based stochastic search algorithm, which has shown a good performance over many benchmark and real-world optimization problem. Like other stochastic algorithms, PSO also easily falls into local optima in solving complex multimodal problems. To help trapped particles escape from local minima, this paper presents a new PSO variant, called AMPSO, by employing an adaptive mutation strategy. To verify the performance of AMPSO, a set of well-known complex multimodal benchmarks are used in the experiments. Simulation results demonstrate that the proposed mutation strategy can efficiently improve the performance of PSO. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:296 / 305
页数:10
相关论文
共 31 条
[1]  
BERGH FVD, 2002, THESIS U PRETORIA S
[2]  
Bratton D., P IEEE SWARM INT S H, P120
[3]  
Cruz-Cortés N, 2005, LECT NOTES COMPUT SC, V3627, P234
[4]   Particle swarm optimization with FUSS and RWS for high dimensional functions [J].
Cui, Zhihua ;
Cai, Xingjuan ;
Zeng, Jianchao ;
Sun, Guoji .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :98-108
[5]  
Cui ZH, 2006, INT J INNOV COMPUT I, V2, P1365
[6]  
García S, 2008, J MACH LEARN RES, V9, P2677
[7]   A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization [J].
Garcia, Salvador ;
Molina, Daniel ;
Lozano, Manuel ;
Herrera, Francisco .
JOURNAL OF HEURISTICS, 2009, 15 (06) :617-644
[8]   Particle swarm optimization with Gaussian mutation [J].
Higashi, N ;
Iba, H .
PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, :72-79
[9]   Efficient Population Utilization Strategy for Particle Swarm Optimizer [J].
Hsieh, Sheng-Ta ;
Sun, Tsung-Ying ;
Liu, Chan-Cheng ;
Tsai, Shang-Jeng .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (02) :444-456
[10]   Knowledge-based cooperative particle swarm optimization [J].
Jie, Jing ;
Zeng, Jianchao ;
Han, Chongzhao ;
Wang, Qinghua .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (02) :861-873