Structure of Tate-Shafarevich groups of elliptic curves over global function fields

被引:0
作者
Brown, M. L. [1 ]
机构
[1] Inst Fournier, F-38402 St Martin Dheres, France
关键词
POINTS;
D O I
10.1215/21562261-3157730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structure of the Tate-Shafarevich groups of a class of elliptic curves over global function fields is determined. These are known to be finite abelian groups and hence they are direct sums of finite cyclic groups where the orders of these cyclic components are invariants of the Tate-Shafarevich group. This decomposition of the Tate-Shafarevich groups into direct sums of finite cyclic groups depends on the behaviour of Drinfeld-Heegner points on these elliptic curves. These are points analogous to Heegner points on elliptic curves over the rational numbers.
引用
收藏
页码:687 / 772
页数:86
相关论文
共 12 条
[1]  
Brown M. L., 2004, LECT NOTES MATH, V1849, DOI [10.1007/b98488, DOI 10.1007/B98488]
[2]  
Gross Benedict H., 1991, London Math. Soc. Lecture Note Ser., V153, P235, DOI DOI 10.1017/CBO9780511526053.009
[3]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES [J].
GROSS, BH ;
ZAGIER, DB .
INVENTIONES MATHEMATICAE, 1986, 84 (02) :225-320
[5]  
Kolyvagin V.A., 1990, PROGR MATH, P435
[6]  
Kolyvagin V.A., 1988, Izv. Akad. Nauk SSSR Ser. Mat, V52, P670
[7]   ON THE STRUCTURE OF SELMER GROUPS [J].
KOLYVAGIN, VA .
MATHEMATISCHE ANNALEN, 1991, 291 (02) :253-259
[8]  
KOLYVAGIN VA, 1991, LECT NOTES MATH, V1479, P94
[9]  
McCallum W., 1991, LONDON MATH SOC LECT, V153, P295
[10]  
MILNE JS, 1986, PERSPECT MATH, V1