Kendall distributions and level sets in bivariate exchangeable survival models

被引:29
作者
Nappo, Giovanna [1 ]
Spizzichino, Fabio [1 ]
机构
[1] Univ Roma La Sapienza, Dept Math, I-00185 Rome, Italy
关键词
Survival copulas; Bivariate aging functions; Semi-copulas; Archimedean copulas; Associative copulas; Bivariate VaR-curves;
D O I
10.1016/j.ins.2009.02.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a given bivariate survival function F, we study the relations between the set of the level curves of (F) over bar and the Kendall distribution. Then we characterize the survival models simultaneously admitting a specified Kendall distribution and a specified set of level curves. Attention will be restricted to exchangeable survival models. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2878 / 2890
页数:13
相关论文
共 20 条
[1]   On a class of transformations of copulas and quasi-copulas [J].
Alvoni, Elisabetta ;
Papini, Pier Luigi ;
Spizzichino, Fabio .
FUZZY SETS AND SYSTEMS, 2009, 160 (03) :334-343
[2]  
[Anonymous], 1999, INTRO COPULAS
[3]   Bivariate survival models with Clayton aging functions [J].
Bassan, B ;
Spizzichino, F .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (01) :6-12
[4]   Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes [J].
Bassan, B ;
Spizzichino, F .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 93 (02) :313-339
[5]  
Bassan B., 2001, System and Bayesian reliability: essays in honor of professor Richard E Barlow on his 70th Birthday, P229
[6]  
Durante F, 2005, KYBERNETIKA, V41, P315
[7]  
DURANTE F, FUZZY SET S IN PRESS
[8]  
DURANTE F, DISTORTED COPU UNPUB
[9]  
Durante F, 2006, KYBERNETIKA, V42, P287
[10]   Bounds for functions of multivariate risks [J].
Embrechts, P ;
Puccetti, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (02) :526-547