Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians

被引:161
作者
Mostafazadeh, A [1 ]
机构
[1] Koc Univ, Dept Math, TR-80910 Istanbul, Turkey
关键词
D O I
10.1016/S0550-3213(02)00347-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We examine the properties and consequences of pseudo-supersymmetry for quantum systems admitting a pseudo-Hermitian Hamiltonian. We explore the Witten index of pseudo-supersymmetry and show that every pair of diagonalizable (not necessarily Hermitian) Hamiltonians with discrete spectra and real or complex-conjugate pairs of eigenvalues are isospectral and have identical degeneracy structure except perhaps for the zero eigenvalue if and only if they are pseudo-supersymmetric partners. This implies that pseudo-supersymmetry is the basic framework for generating non-Hermitian PT-symmetric and non-P T-symmetric Hamiltonians with a real spectrum via a Darboux transformation, and shows that every diagonalizable Hamiltonian H with a discrete spectrum and real or complex-conjugate pairs of eigenvalues may be factored as H = (LL)-L-# where L is a linear operator with pseudo-adjoint L-#. In particular, this factorization applies to PT-symmetric and Hermitian Hamiltonians. The non-degenerate two-level systems provide a class of Hamiltonians that are pseudo-Hermitian. We demonstrate the implications of our general results for this class in some detail. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:419 / 434
页数:16
相关论文
共 49 条
[1]   Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 290 (1-2) :19-22
[2]   Energy band structure due to a complex, periodic, PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 286 (04) :231-235
[3]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[4]   SUSY quantum mechanics with complex superpotentials and real energy spectra [J].
Andrianov, AA ;
Ioffe, MV ;
Cannata, F ;
Dedonder, JP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17) :2675-2688
[5]   PT-symmetric sextic potentials [J].
Bagchi, B ;
Cannata, F ;
Quesne, C .
PHYSICS LETTERS A, 2000, 269 (2-3) :79-82
[6]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[7]   Creation and annihilation operators and coherent states for the PT-symmetric oscillator [J].
Bagchi, B ;
Quesne, C .
MODERN PHYSICS LETTERS A, 2001, 16 (38) :2449-2455
[8]   Generating complex potentials with real eigenvalues in supersymmetric quantum mechanics [J].
Bagchi, B ;
Mallik, S ;
Quesne, C .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (16) :2859-2872
[9]  
BAGCHI B, QUANTPH0201063
[10]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621