Fault detection and diagnosis in water resource recovery facilities using incremental PCA

被引:20
作者
Kazemi, Pezhman [1 ]
Giralt, Jaume [1 ]
Bengoa, Christophe [1 ]
Masoumian, Armin [2 ]
Steyer, Jean-Philippe [3 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Avda Paisos Catalans 26, Tarragona 43007, Spain
[3] Univ Montpellier, INRAE, LBE, 102 Ave Etangs, F-11100 Narbonne, France
关键词
BSM2; EBLUP; fault detection; fault isolation; incremental PCA; time-varying processes; BENCHMARK SIMULATION-MODEL; MULTIVARIATE;
D O I
10.2166/wst.2020.368
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Because of the static nature of conventional principal component analysis (PCA), natural process variations may be interpreted as faults when it is applied to processes with time-varying behavior. In this paper, therefore, we propose a complete adaptive process monitoring framework based on incremental principal component analysis (IPCA). This framework updates the eigenspace by incrementing new data to the PCA at a low computational cost. Moreover, the contribution of variables is recursively provided using complete decomposition contribution (CDC). To impute missing values, the empirical best linear unbiased prediction (EBLUP) method is incorporated into this framework. The effectiveness of this framework is evaluated using benchmark simulation model No. 2 (BSM2). Our simulation results show the ability of the proposed approach to distinguish between time-varying behavior and faulty events while correctly isolating the sensor faults even when these faults are relatively small.
引用
收藏
页码:2711 / 2724
页数:14
相关论文
共 30 条
[1]   Reconstruction-based contribution for process monitoring [J].
Alcala, Carlos F. ;
Qin, S. Joe .
AUTOMATICA, 2009, 45 (07) :1593-1600
[2]  
Arora R, 2012, ANN ALLERTON CONF, P861, DOI 10.1109/Allerton.2012.6483308
[3]  
Artac M, 2002, INT C PATT RECOG, P781, DOI 10.1109/ICPR.2002.1048133
[4]  
Brand M, 2002, LECT NOTES COMPUT SC, V2350, P707
[5]   Online Principal Component Analysis in High Dimension: Which Algorithm to Choose? [J].
Cardot, Herve ;
Degras, David .
INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (01) :29-50
[6]   Adaptive multivariate statistical process control for monitoring time-varying processes [J].
Choi, SW ;
Martin, EB ;
Morris, AJ ;
Lee, IB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (09) :3108-3118
[7]   Fault diagnosis of time-varying processes using modified reconstruction-based contributions [J].
Elshenawy, Lamiaa M. ;
Mahmoud, Tarek A. .
JOURNAL OF PROCESS CONTROL, 2018, 70 :12-23
[8]   Recursive Fault Detection and Isolation Approaches of Time-Varying Processes [J].
Elshenawy, Lamiaa M. ;
Awad, Hamdi. A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (29) :9812-9824
[9]   Efficient Recursive Principal Component Analysis Algorithms for Process Monitoring [J].
Elshenawy, Lamiaa M. ;
Yin, Shen ;
Naik, Amol S. ;
Ding, Steven X. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (01) :252-259
[10]  
Garcia-Alvarez D., 2009, IFAC P, V42, P952