Recent results on the quasi-optimality principle

被引:14
作者
Bauer, F. [2 ]
Kindermann, S. [1 ]
机构
[1] Johannes Kepler Univ Linz, Ind Math Inst, A-4040 Linz, Austria
[2] Johannes Kepler Univ Linz, Fuzzy Log Lab Linz Hagenberg, A-4232 Hagenberg, Austria
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2009年 / 17卷 / 01期
关键词
Quasi-optimality criterion; convergence rates; oracle inequality; ILL-POSED PROBLEMS; REGULARIZATION PARAMETER; TIKHONOV REGULARIZATION; NONINCREASING FUNCTIONS; CROSS-VALIDATION; CONVERGENCE; INEQUALITY; CRITERION; NOISY;
D O I
10.1515/JIIP.2009.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a survey of results concerning the convergence and convergence rates and oracle inequalities for the quasi-optimality parameter choice for the most common regularization methods.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 35 条
[21]  
LEONOV A, 1979, USSR COMP MATH MATH, V18, P1
[22]   Robust generalized cross-validation for choosing the regularization parameter [J].
Lukas, Mark A. .
INVERSE PROBLEMS, 2006, 22 (05) :1883-1902
[23]   Geometry of linear ill-posed problems in variable Hilbert scales [J].
Mathé, P ;
Pereverzev, SV .
INVERSE PROBLEMS, 2003, 19 (03) :789-803
[24]  
Mathé P, 2006, Z ANAL ANWEND, V25, P411
[25]   How general are general source conditions? [J].
Mathe, Peter ;
Hofmann, Bernd .
INVERSE PROBLEMS, 2008, 24 (01)
[26]   On converse and saturation results for Tikhonov regularization of linear ill-posed problems [J].
Neubauer, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :517-527
[27]   The convergence of a new heuristic parameter selection criterion for general regularization methods [J].
Neubauer, Andreas .
INVERSE PROBLEMS, 2008, 24 (05)
[28]   THE WEIGHTED HARDYS INEQUALITY FOR NONINCREASING FUNCTIONS [J].
STEPANOV, VD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :173-186
[29]  
TIKHONOV A, 1964, VYCHISL MAT MAT FIZ, V4, P564
[30]  
Tikhonov A.N., 1965, USSR Comput. Math. Math. Phys., V5, P93, DOI [10.1016/0041-5553(65)90150-3, DOI 10.1016/0041-5553(65)90150-3]