Metastable Lennard-Jones fluids. II. Thermal conductivity

被引:19
作者
Baidakov, Vladimir G. [1 ]
Protsenko, Sergey P. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Thermophys, Ekaterinburg 620016, Russia
基金
俄罗斯基础研究基金会;
关键词
SELF-DIFFUSION COEFFICIENT; MOLECULAR-DYNAMICS; DENSITY EXPANSION; TRIPLE-POINT; TRANSPORT-COEFFICIENTS; SIMULATIONS; VISCOSITY; EQUATIONS; STATES; EQUILIBRIUM;
D O I
10.1063/1.4880958
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The method of equilibrium molecular dynamics with the use of the Green-Kubo formalism has been used to calculate the thermal conductivity lambda in stable and metastable regions of a Lennard-Jones fluid. Calculations have been made in the range of reduced temperatures 0.4 < T* = k(B)T/epsilon <= 2.0 and densities 0.01 <= rho* = rho sigma(3) <= 1.2 on 15 isotherms for 234 states, 130 of which refer to metastable regions: superheated and supercooled liquids, supersaturated vapor. Equations have been built up which describe the dependence of the regular part of the thermal conductivity on temperature and density, and also on temperature and pressure. It has been found that in (p, T) variables in the region of a liquid-gas phase transition a family of lines of constant value of excess thermal conductivity Delta lambda = lambda - lambda(0), where lambda(0) is the thermal conductivity of a dilute gas, has an envelope which coincides with the spinodal. Thus, at the approach to the spinodal of a superheated liquid and supersaturated vapor (partial derivative Delta lambda/partial derivative p)(T) -> infinity, (partial derivative Delta lambda/partial derivative T)(p)-> infinity. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa [J].
Assael, M. J. ;
Koini, I. A. ;
Antoniadis, K. D. ;
Huber, M. L. ;
Abdulagatov, I. M. ;
Perkins, R. A. .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2012, 41 (02)
[2]   Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa [J].
Assael, M. J. ;
Assael, J. -A. M. ;
Huber, M. L. ;
Perkins, R. A. ;
Takata, Y. .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2011, 40 (03)
[3]   Thermal and caloric equations of state for stable and metastable Lennard-Jones fluids: 1. Molecular-dynamics simulations [J].
Baidakov, V. G. ;
Protsenko, S. P. ;
Kozlova, Z. R. .
FLUID PHASE EQUILIBRIA, 2008, 263 (01) :55-63
[4]   The isochoric heat capacity of a metastable Lennard-Jones fluid [J].
Baidakov, V. G. ;
Protsenko, S. P. ;
Kozlova, Z. R. .
CHEMICAL PHYSICS LETTERS, 2007, 447 (4-6) :236-240
[5]   The self-diffusion coefficient in stable and metastable states of the Lennard-Jones fluid [J].
Baidakov, V. G. ;
Protsenko, S. P. ;
Kozlova, Z. R. .
FLUID PHASE EQUILIBRIA, 2011, 305 (02) :106-113
[6]   The self-diffusion coefficient in metastable states of a Lennard-Jones fluid [J].
Baidakov, V. G. ;
Kozlova, Z. R. .
CHEMICAL PHYSICS LETTERS, 2010, 500 (1-3) :23-27
[7]   Metastable extension of the liquid-vapor phase equilibrium curve and surface tension [J].
Baidakov, V. G. ;
Protsenko, S. P. ;
Kozlova, Z. R. ;
Chernykh, G. G. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (21)
[8]   Singular point of a system of Lennard-Jones particles at negative pressures [J].
Baidakov, VG ;
Protsenko, SP .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[9]   Metastable Lennard-Jones fluids. I. Shear viscosity [J].
Baidakov, Vladimir G. ;
Protsenko, Sergey P. ;
Kozlova, Zaliya R. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (16)
[10]   Transport coefficients and the spinodal of a fluid [J].
Baidakov, Vladimir G. .
PHYSICAL REVIEW E, 2012, 86 (02)