Estimating the asymptotic constants of the total length of Euclidean minimal spanning trees with power-weighted edges

被引:3
作者
Cortina-Borja, M
Robinson, T
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Bath, Dept Math Sci, Bath BA2 7AT, Avon, England
关键词
minimal spanning tree; Euclidean spaces; probabilistic analysis;
D O I
10.1016/S0167-7152(99)00147-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Steele (1988, Arm. Probab. 16, 1767-1787) has proved that the total length of several combinatorial optimization problems in R-p involving trees with n nodes and alpha-power-weighted edges is asymptotically c(p, alpha)n((p-x)/p), where 0 < alpha less than or equal to p. In this paper we obtain bounds for these constants and give estimates for c(p, alpha), for 2 less than or equal to p less than or equal to 10 and alpha = 1, 1.5,2. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 128
页数:4
相关论文
共 5 条
[1]  
[Anonymous], P CAMB PHILO SOC, DOI DOI 10.1017/S0305004100034095
[2]  
Avram F., 1992, ANN APPL PROBAB, V2, P113, DOI 10.1214/aoap/1177005773
[3]   AN ASYMPTOTIC DETERMINATION OF THE MINIMUM SPANNING TREE AND MINIMUM MATCHING CONSTANTS IN GEOMETRICAL-PROBABILITY [J].
BERTSIMAS, DJ ;
VANRYZIN, G .
OPERATIONS RESEARCH LETTERS, 1990, 9 (04) :223-231
[4]  
ROBERTS FDK, 1968, BIOMETRIKA, V55, P255, DOI 10.2307/2334472
[5]   GROWTH-RATES OF EUCLIDEAN MINIMAL SPANNING-TREES WITH POWER WEIGHTED EDGES [J].
STEELE, JM .
ANNALS OF PROBABILITY, 1988, 16 (04) :1767-1787