Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure

被引:60
作者
Mao, Xiuhai [1 ,2 ]
Simon, Anna J. [3 ,4 ]
Pei, Hao [1 ,2 ]
Shi, Jiye [5 ,6 ]
Li, Jiang [1 ,2 ]
Huang, Qing [1 ,2 ]
Plaxco, Kevin W. [3 ,4 ]
Fan, Chunhai [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Shanghai Synchrotron Radiat Facil,Div Phys Biol, Shanghai, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Shanghai Synchrotron Radiat Facil,Bioimaging Ctr, Shanghai, Peoples R China
[3] Univ Calif Santa Barbara, Dept Chem & Biomol Sci, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Engn Program, Santa Barbara, CA 93106 USA
[5] Univ Oxford, Kellogg Coll, Oxford OX2 6PN, England
[6] UCB Pharma, 208 Bath Rd, Slough SL1 3WE, Berks, England
[7] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201200, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPUTATIONAL DESIGN; PEROXIDASE-ACTIVITY; PROTEIN; ASSEMBLIES; SWITCHES; INSIGHTS; RELEASE; COMPLEX;
D O I
10.1039/c5sc03705k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recognition of the fundamental importance of allosteric regulation in biology dates back to not long after its discovery in the 1960s. Our ability to rationally engineer this potentially useful property into normally non-allosteric catalysts, however, remains limited. In response we report a DNA nanotechnology-enabled approach for introducing allostery into catalytic nucleic acids. Specifically, we have grafted one or two copies of a peroxidase-like DNAzyme, hemin-bound G-quadruplex (hemin-G), onto a DNA tetrahedral nanostructure in such a manner as to cause them to interact, modulating their catalytic activity. We achieve allosteric regulation of these catalysts by incorporating dynamically responsive oligonucleotides that respond to specific "effector" molecules (complementary oligonucleotides or small molecules), altering the spacing between the catalytic sites and thus regulating their activity. This designable approach thus enables subtle allosteric modulation in DNAzymes that is potentially of use for nanomedicine and nanomachines.
引用
收藏
页码:1200 / 1204
页数:5
相关论文
共 43 条
[1]   A general approach to the design of allosteric, transcription factor-regulated DNAzymes [J].
Adornetto, G. ;
Porchetta, A. ;
Palleschi, G. ;
Plaxco, K. W. ;
Ricci, F. .
CHEMICAL SCIENCE, 2015, 6 (07) :3692-3696
[2]  
[Anonymous], 2011, Angew. Chem., DOI DOI 10.1002/ANGE.201105193
[3]   Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold [J].
Azoitei, Mihai L. ;
Correia, Bruno E. ;
Ban, Yih-En Andrew ;
Carrico, Chris ;
Kalyuzhniy, Oleksandr ;
Chen, Lei ;
Schroeter, Alexandria ;
Huang, Po-Ssu ;
McLellan, Jason S. ;
Kwong, Peter D. ;
Baker, David ;
Strong, Roland K. ;
Schief, William R. .
SCIENCE, 2011, 334 (6054) :373-376
[4]   An exciting but challenging road ahead for computational enzyme design [J].
Baker, David .
PROTEIN SCIENCE, 2010, 19 (10) :1817-1819
[5]   General Peroxidase Activity of G-Quadruplex-Hemin Complexes and Its Application in Ligand Screening [J].
Cheng, Xiaohong ;
Liu, Xiangjun ;
Bing, Tao ;
Cao, Zehui ;
Shangguan, Dihua .
BIOCHEMISTRY, 2009, 48 (33) :7817-7823
[6]   From Computational Design to a Protein That Binds [J].
Der, Bryan S. ;
Kuhlman, Brian .
SCIENCE, 2011, 332 (6031) :801-802
[7]  
Erben C.M., 2006, Angew. Chem. Int. Ed, V118, P7574, DOI DOI 10.1002/ANGE.200603392
[8]   Allostery: an illustrated definition for the 'second secret of life' [J].
Fenton, Aron W. .
TRENDS IN BIOCHEMICAL SCIENCES, 2008, 33 (09) :420-425
[9]   Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme [J].
Freiburger, Lee A. ;
Baettig, Oliver M. ;
Sprules, Tara ;
Berghuis, Albert M. ;
Auclair, Karine ;
Mittermaier, Anthony K. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (03) :288-U70
[10]   Controlled drug release by a nanorobot [J].
Fu, Jinglin ;
Yan, Hao .
NATURE BIOTECHNOLOGY, 2012, 30 (05) :407-408