Multi-document summarization based on unsupervised clustering

被引:0
作者
Ji, Paul [1 ]
机构
[1] Univ Oxford, Ctr Linguist & Philol, Oxford, England
来源
INFORMATION RETRIEVAL TECHNOLOLGY, PROCEEDINGS | 2006年 / 4182卷
关键词
multi-document summarization; clustering; entropy; optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a method for multi-document summarization based on unsupervised clustering. First, the main topics are determined by a MDL-based clustering strategy capable of inferring optimal cluster numbers. Then, the problem of multi-document summarization is formalized on the clusters using an entropy-based object function.
引用
收藏
页码:560 / 566
页数:7
相关论文
共 11 条
[1]  
[Anonymous], TEXT
[2]  
BARZILAY R, 1999, P 37 ACL MAR
[3]  
BOROS E, 2001, P 24 ACM SIGIR C LA
[4]  
BOUMAN CA, 1998, UNSUPERVISED ALGORIT
[5]  
HARDY H, 2002, SIGIR, P121
[6]  
HATZIVASSILOGLO.V, P EMNLP 99
[7]  
KNIGHT K, 2002, ARTIFICIAL INTELLIGE, V139
[8]  
Over P., 2004, P DOC UND C
[9]  
RADEV DR, 2004, P LREC 2004 LISB POR
[10]  
SIDDHARTHAN A, 2004, P COLING GEN SWITZ