Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst

被引:19
作者
Chatterjee, Pritha [1 ]
Ghangrekar, M. M. [1 ]
Rao, Surampalli [2 ]
Kumar, Senthil [3 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[2] Global Inst Energy Environm & Sustainabil, Lenexa, KS USA
[3] Cent Electrochem Res Inst, CSIR, Karaikkudi 630006, Tamil Nadu, India
关键词
COD removal; Sulphate removal; Sulphur recovery; Microbial fuel cell; Wastewater treatment; ELECTRICITY-GENERATION; REMOVAL; PERFORMANCE; COSUBSTRATE; RECOVERY; ANODE; CO3O4;
D O I
10.1007/s00449-017-1741-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m(2), at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m(3) day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.
引用
收藏
页码:759 / 768
页数:10
相关论文
共 21 条
[1]   Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells [J].
Ahn, Yongtae ;
Ivanov, Ivan ;
Nagaiah, Tharamani C. ;
Bordoloi, Ankur ;
Logan, Bruce E. .
JOURNAL OF POWER SOURCES, 2014, 269 :212-215
[2]  
APHA-(American Public Health Association) WEF, 1998, STANDARD METHODS EXA, V20th
[3]   Effect of electrode types on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell [J].
Cai, Jing ;
Zheng, Ping ;
Qaisar, Mahmood ;
Sun, Peide .
SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 134 :20-25
[4]   Electrochemical regeneration of sulfur loaded electrodes [J].
Dutta, Paritam K. ;
Rozendal, Rene A. ;
Yuan, Zhiguo ;
Rabaey, Korneel ;
Keller, Juerg .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (07) :1437-1440
[5]   Role of Sulfur during Acetate Oxidation in Biological Anodes [J].
Dutta, Paritam K. ;
Keller, Juerg ;
Yuan, Zhiguo ;
Rozendal, Rene A. ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3839-3845
[6]   Spontaneous electrochemical removal of aqueous sulfide [J].
Dutta, Paritam K. ;
Rabaey, Korneel ;
Yuan, Zhiguo ;
Keller, Juerg .
WATER RESEARCH, 2008, 42 (20) :4965-4975
[7]   EFFECT OF SULFATE CONCENTRATION IN THE WASTEWATER ON MICROBIAL FUEL CELL PERFORMANCE [J].
Ghangrekar, Makarand Madhao ;
Murthy, Sirigirisetty S. R. ;
Behera, Manaswini ;
Duteanu, Narcis .
ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2010, 9 (09) :1227-1234
[8]   Nutrients removal and recovery in bioelectrochemical systems: A review [J].
Kelly, Patrick T. ;
He, Zhen .
BIORESOURCE TECHNOLOGY, 2014, 153 :351-360
[9]   Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm [J].
Lee, Duu-Jong ;
Liu, Xiang ;
Weng, Hsiang-Ling .
BIORESOURCE TECHNOLOGY, 2014, 156 :14-19
[10]   Biotechnological treatment of sulfate-rich wastewaters [J].
Lens, PNL ;
Visser, A ;
Janssen, AJH ;
Pol, LWH ;
Lettinga, G .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 1998, 28 (01) :41-88