A note on linear differential equations with periodic coefficients

被引:4
作者
Grau, Maite [1 ]
Peralta-Salas, Daniel [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Linear differential equations; Characteristic multipliers; Hyperbolicity; Limit cycles; STABILITY; SYSTEMS;
D O I
10.1016/j.na.2009.01.199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider linear homogeneous differential equations of the form (x) over dot = A(t)x where A(t) is a square matrix of C-1, real and T-periodic functions, with T > 0. We give several criteria on the matrix A(t) to prove the asymptotic stability of the trivial solution to equation (x) over dot = A(t)x. These criteria allow us to show that any finite configuration of cycles in R-n can be realized as hyperbolic limit cycles of a polynomial vector field. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3197 / 3202
页数:6
相关论文
共 15 条
[1]  
Bellman R., 1953, STABILITY THEORY DIF
[2]  
Bochnak, 2013, REAL ALGEBRAIC GEOME
[3]  
Cesari L., 1971, ASYMPTOTIC BEHAV STA
[4]  
Chicone C, 1999, texts in applied mathematics, V34
[5]  
Coppel WA., 1978, Dichotomies in Stability Theory
[6]   A NOTE ON THE ASYMPTOTIC STABILITY OF PERIODIC-SOLUTIONS OF AUTONOMOUS DIFFERENTIAL-EQUATIONS [J].
DEKLEINE, HA .
SIAM REVIEW, 1984, 26 (03) :417-421
[7]   On stability of solutions to linear systems with periodic coefficients [J].
Demidenko, GV ;
Matveeva, II .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (02) :282-296
[8]  
Gasull A, 2008, DISCRETE CONT DYN-B, V10, P495
[9]  
Hahn W., 1967, Stability of Motion
[10]  
HALE J. K., 1969, Ordinary Differential Equations