Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans

被引:101
作者
Korakli, Maher [1 ]
Vogel, Rudi F. [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Tech Mikrobiol, D-85350 Freising Weihenstephan, Germany
关键词
D O I
10.1007/s00253-006-0469-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The capability of lactic acid bacteria (LAB) to produce exopoly- and oligosaccharides was and is the subject of expanding research efforts. Due to their physicochemical properties and health-promoting potential, exopoly- and oligosaccharides from food-grade LAB can be used in the food and other industries and may have additional medical applications. In the last years, many LAB have been screened for their ability to produce exopoly- and oligosaccharides, and several glycosyltransferases involved in their biosynthesis have been characterised at biochemical and genetic levels. These research efforts aim to exploit the full potential of these organisms and to understand the structure/function relationship of glycosyltransferases. The latter knowledge is a prerequisite for the production of tailored exopoly- and oligosaccharides for the diverse applications. This review will survey the results of recent works on the structure/function relationship of homopolysaccharide producing glycosyltransferases and the therapeutic potential of their synthesised exopoly- and oligosaccharides.
引用
收藏
页码:790 / 803
页数:14
相关论文
共 73 条
[1]   PEPTIDE SEQUENCES FOR SUCROSE SPLITTING AND GLUCAN BINDING WITHIN STREPTOCOCCUS-SOBRINUS GLUCOSYLTRANSFERASE (WATER-INSOLUBLE GLUCAN SYNTHETASE) [J].
ABO, H ;
MATSUMURA, T ;
KODAMA, T ;
OHTA, H ;
FUKUI, K ;
KATO, K ;
KAGAWA, H .
JOURNAL OF BACTERIOLOGY, 1991, 173 (03) :989-996
[2]   Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355 [J].
Argüello-Morales, MA ;
Remaud-Simeon, M ;
Pizzut, S ;
Sarçabal, P ;
Willemot, RM ;
Monsan, P .
FEMS MICROBIOLOGY LETTERS, 2000, 182 (01) :81-85
[3]   Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides [J].
Barthelson, R ;
Mobasseri, A ;
Zopf, D ;
Simon, P .
INFECTION AND IMMUNITY, 1998, 66 (04) :1439-1444
[4]   Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity [J].
Batista, FR ;
Hernández, L ;
Fernández, JR ;
Arrieta, J ;
Menéndez, C ;
Gómez, R ;
Támbara, Y ;
Pons, T .
BIOCHEMICAL JOURNAL, 1999, 337 :503-506
[5]   Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M [J].
Bergmaier, D ;
Champagne, CP ;
Lacroix, C .
JOURNAL OF APPLIED MICROBIOLOGY, 2005, 98 (02) :272-284
[6]   KINETICS OF LEUCROSE FORMATION FROM SUCROSE BY DEXTRANSUCRASE (VOL 43, PG 856, 1994) [J].
BOKER, M ;
JORDENING, H ;
BUCHHOLZ, K .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (03) :392-394
[7]  
CERNING J, 1990, FEMS MICROBIOL LETT, V87, P113, DOI 10.1111/j.1574-6968.1990.tb04883.x
[8]  
Cummings JH, 2001, AM J CLIN NUTR, V73, p415S, DOI 10.1093/ajcn/73.2.415s
[9]   STRUCTURES AND MECHANISMS OF GLYCOSYL HYDROLASES [J].
DAVIES, G ;
HENRISSAT, B .
STRUCTURE, 1995, 3 (09) :853-859
[10]   Recent structural insights into the expanding world of carbohydrate-active enzymes [J].
Davies, GJ ;
Gloster, TM ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (06) :637-645