A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes

被引:203
作者
Liu, X. Y. [1 ]
Gao, Y. Q. [1 ]
Yang, G. W. [1 ]
机构
[1] Sun Yat Sen Univ, Nanotechnol Res Ctr, Sch Mat Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
HYBRID ELECTRODES; CLOTH; NANOPARTICLES; MICROSPHERES; PERFORMANCE; NANOFIBERS; NANOWIRES; HYDROXIDE; PAPER;
D O I
10.1039/c5nr09145d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible and transparent supercapacitors, as advanced energy storage devices, are essential for the development of innovative wearable electronics because of their unique optical and mechanical qualities. However, all previous designs are based on carbon-based nanostructures like carbon nanotubes and graphene, and these devices usually have poor or short cycling lives. Here, we demonstrate a high-performance, flexible, transparent, and super-long-life supercapacitor made from ultrafine Co3O4 nanocrystals synthesized using a novel process involving laser ablation in liquid. The fabricated flexible and transparent pseudocapacitor exhibits a high capacitance of 177 F g(-1) on a mass basis and 6.03 mF cm(-2) based on the area of the active material at a scan rate of 1 mV s(-1), as well as a super-long cycling life with 100% retention rate after 20 000 cycles. An optical transmittance of up to 51% at a wavelength of 550 nm is achieved, and there are not any obvious changes in the specific capacitance after bending from 0 degrees to 150 degrees, even after bending over 100 times. The integrated electrochemical performance of the Co3O4-based supercapacitor is greatly superior to that of the carbon-based ones reported to date. These findings open the door to applications of transition metal oxides as advanced electrode materials in flexible and transparent pseudocapacitors.
引用
收藏
页码:4227 / 4235
页数:9
相关论文
共 37 条
[1]   Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor [J].
Bao, SJ ;
He, BL ;
Liang, YY ;
Zhou, WJ ;
Li, HL .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 397 (1-2) :305-309
[2]  
Baydi M.E., 1994, J SOLID STATE CHEM, V109, P281, DOI DOI 10.1006/JSSC.1994.1105
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[5]   Sub-3 nm Co3O4 Nanofilms with Enhanced Supercapacitor Properties [J].
Feng, Chao ;
Zhang, Jinfeng ;
He, Yu ;
Zhong, Cheng ;
Hu, Wenbin ;
Liu, Lei ;
Deng, Yida .
ACS NANO, 2015, 9 (02) :1730-1739
[6]   Paper-based transparent flexible thin film supercapacitors [J].
Gao, Kezheng ;
Shao, Ziqiang ;
Wu, Xue ;
Wang, Xi ;
Zhang, Yunhua ;
Wang, Wenjun ;
Wang, Feijun .
NANOSCALE, 2013, 5 (12) :5307-5311
[7]   High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors [J].
Guo, Di ;
Luo, Yazi ;
Yu, Xinzhi ;
Li, Qiuhong ;
Wang, Taihong .
NANO ENERGY, 2014, 8 :174-182
[8]   Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance [J].
Horng, Ying-Ying ;
Lu, Yi-Chen ;
Hsu, Yu-Kuei ;
Chen, Chia-Chun ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
JOURNAL OF POWER SOURCES, 2010, 195 (13) :4418-4422
[9]   ELECTRIC DOUBLE-LAYER CAPACITOR COMPOSED OF ACTIVATED CARBON-FIBER CLOTH ELECTRODES AND SOLID POLYMER ELECTROLYTES CONTAINING ALKYLAMMONIUM SALTS [J].
ISHIKAWA, M ;
MORITA, M ;
IHARA, M ;
MATSUDA, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :1730-1734
[10]   Preparation of Hollow Co3O4 Microspheres and Their Ethanol Sensing Properties [J].
Jiao, Qingze ;
Fu, Min ;
You, Chao ;
Zhao, Yun ;
Li, Hansheng .
INORGANIC CHEMISTRY, 2012, 51 (21) :11513-11520