Asymptotic error distribution for the Riemann approximation of integrals driven by fractional Brownian motion

被引:2
作者
Garino, Valentin [1 ]
Nourdin, Ivan [1 ]
Vallois, Pierre [2 ]
机构
[1] Univ Luxembourg, Luxembourg, Luxembourg
[2] Univ Lorraine, Nancy, France
关键词
Malliavin-Stein approach; fractional Brownian motion; Riemann sum; Rosenblatt process; CONVERGENCE; RESPECT; SCHEMES; PATHS; TIME;
D O I
10.1214/22-EJP852
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Riemann sum approximations of stochastic integrals with respect to the fractional Browian motion of index H >= 1/2. We show the convergence of these schemes at first and second order. The processes obtained in the limit in the second case are stochastic integrals with respect to the Rosenblatt process if H > 3/4 and the standard Brownian motion otherwise. These results are obtained under the assumption that the integrand is a "controlled" process. We provide many examples of such processes, in particular fractional semimartingales and multiple Wiener-Ito integrals.
引用
收藏
页数:43
相关论文
共 39 条
[1]   The asymptotic expansion of the regular discretization error of Ito integrals [J].
Alos, Elisa ;
Fukasawa, Masaaki .
MATHEMATICAL FINANCE, 2021, 31 (01) :323-365
[2]  
[Anonymous], 1995, Princeton mathematical series
[3]   Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion [J].
Azmoodeh, Ehsan ;
Viitasaari, Lauri .
JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (01) :396-422
[4]   Long memory in continuous-time stochastic volatility models [J].
Comte, F ;
Renault, E .
MATHEMATICAL FINANCE, 1998, 8 (04) :291-323
[5]   Tanaka formula for the fractional Brownian motion [J].
Coutin, L ;
Nualart, D ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) :301-315
[6]  
Dobler C., IN PRESS
[7]  
Friz P. K., 2014, COURSE ROUGH PATHS U
[8]   DISCRETIZATION ERROR OF STOCHASTIC INTEGRALS [J].
Fukasawa, Masaaki .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (04) :1436-1465
[9]   REAL VARIABLE LEMMA AND CONTINUITY OF PATHS OF SOME GAUSSIAN PROCESSES [J].
GARSIA, AM ;
RODEMICH, E ;
RUMSEY, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (06) :565-&
[10]  
Gobet E., 2001, FINANC STOCH, V5, P357, DOI DOI 10.1007/PL00013539