The maximum order of finite groups of automorphisms of K3 surfaces

被引:22
作者
Kondo, S [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1353/ajm.1999.0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group of automorphisms of a K3 surface X. We shall show that \G\ less than or equal to 3840 and if \G\ = 3840, then the pair (X, G) is unique up to isomorphisms.
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1988, GRUNDLEHREN MATH WIS
[2]   AUTOMORPHISM-GROUPS OF LORENTZIAN LATTICES [J].
BORCHERDS, R .
JOURNAL OF ALGEBRA, 1987, 111 (01) :133-153
[3]  
JONES BW, 1935, NATL RES COUNCIL B, V97
[4]  
JONES BW, 1950, ARITHMETIC THEORY QU
[5]  
Kondo S, 1998, J ALGEBRAIC GEOM, V7, P589
[6]   AUTOMORPHISMS OF ALGEBRAIC K3-SUSFACES WHICH ACT TRIVIALLY ON PICARD-GROUPS [J].
KONDO, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1992, 44 (01) :75-98
[7]   Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces [J].
Kondo, S .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :593-603
[8]  
MACHIDA N., 1998, J. Math. Sci. Univ. Tokyo, V5, P273
[9]   FINITE-GROUPS OF AUTOMORPHISMS OF K3 SURFACES AND THE MATHIEU-GROUP [J].
MUKAI, S .
INVENTIONES MATHEMATICAE, 1988, 94 (01) :183-221
[10]  
Niemeier H.-V., 1973, J NUMBER THEORY, V5, P142, DOI 10.1016/0022-314X(73)90068-1