Differentiability of bizonal positive definite kernels on complex spheres

被引:6
作者
Menegatto, V. A. [1 ]
机构
[1] ICMC USP Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
关键词
Differentiability; Positive definite kernels and functions; Sphere; Bizonal kernels; GENERALIZED ZERNIKE; DISC POLYNOMIALS; SPACES;
D O I
10.1016/j.jmaa.2013.10.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any continuous function with domain (z is an element of C: vertical bar z vertical bar <= 1) that generates a bizonal positive definite kernel on the unit sphere in C-q, q >= 3, is continuously differentiable in {z is an element of C: vertical bar z vertical bar < 1} up to order q - 2, with respect to both z and <(z)over bar>. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z is an element of C: vertical bar z vertical bar < 1} up to the same order. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 24 条
  • [1] [Anonymous], INT J MATH MATH SCI
  • [2] Berg C., 1984, GRAD TEXTS MATH, V100
  • [3] Positive definite matrices and differentiable reproducing kernel inequalities
    Buescu, Jorge
    Paixao, A. C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) : 279 - 292
  • [4] EIGENVALUE DECAY OF POSITIVE INTEGRAL OPERATORS ON THE SPHERE
    Castro, M. H.
    Menegatto, V. A.
    [J]. MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2303 - 2317
  • [5] Cheney E.W., 2009, GRAD STUD MATH, V101
  • [6] Fasshauer G.E., 2007, INTERDISCIP MATH SCI, V6
  • [7] Reproducing properties of differentiable Mercer-like kernels
    Ferreira, Jose C.
    Menegatto, Valdir A.
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 959 - 973
  • [8] Ghorpade S.R., 2010, TEXTS MATH
  • [9] Koornwinder T.H., 1976, TW133 MATH CENTR
  • [10] KOORNWINDER TH, 1972, TW135 MATH CENTR