Differentiability of bizonal positive definite kernels on complex spheres

被引:6
作者
Menegatto, V. A. [1 ]
机构
[1] ICMC USP Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
关键词
Differentiability; Positive definite kernels and functions; Sphere; Bizonal kernels; GENERALIZED ZERNIKE; DISC POLYNOMIALS; SPACES;
D O I
10.1016/j.jmaa.2013.10.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any continuous function with domain (z is an element of C: vertical bar z vertical bar <= 1) that generates a bizonal positive definite kernel on the unit sphere in C-q, q >= 3, is continuously differentiable in {z is an element of C: vertical bar z vertical bar < 1} up to order q - 2, with respect to both z and <(z)over bar>. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z is an element of C: vertical bar z vertical bar < 1} up to the same order. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 24 条
[1]  
[Anonymous], INT J MATH MATH SCI
[2]  
Berg C., 1984, GRAD TEXTS MATH, V100
[3]   Positive definite matrices and differentiable reproducing kernel inequalities [J].
Buescu, Jorge ;
Paixao, A. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :279-292
[4]   EIGENVALUE DECAY OF POSITIVE INTEGRAL OPERATORS ON THE SPHERE [J].
Castro, M. H. ;
Menegatto, V. A. .
MATHEMATICS OF COMPUTATION, 2012, 81 (280) :2303-2317
[5]  
Cheney E.W., 2009, GRAD STUD MATH, V101
[6]  
Fasshauer G.E., 2007, INTERDISCIP MATH SCI, V6
[7]   Reproducing properties of differentiable Mercer-like kernels [J].
Ferreira, Jose C. ;
Menegatto, Valdir A. .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) :959-973
[8]  
Ghorpade S.R., 2010, TEXTS MATH
[9]  
Koornwinder T.H., 1976, TW133 MATH CENTR
[10]  
KOORNWINDER TH, 1972, TW135 MATH CENTR