Brain Functional Connectivity Asymmetry: Left Hemisphere Is More Modular

被引:4
作者
Jajcay, Lucia [1 ,2 ,3 ]
Tomecek, David [1 ,2 ,3 ]
Horacek, Jiri [1 ,4 ]
Spaniel, Filip [1 ,4 ]
Hlinka, Jaroslav [1 ,2 ]
机构
[1] Natl Inst Mental Hlth, Klecany 25067, Czech Republic
[2] Czech Acad Sci, Inst Comp Sci, Dept Complex Syst, Prague 18207, Czech Republic
[3] Czech Tech Univ, Fac Elect Engn, Prague 16627, Czech Republic
[4] Charles Univ Prague, Fac Med 3, Dept Psychiat, Prague 10000, Czech Republic
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 04期
关键词
cerebral dominance; data analysis; functional laterality; fMRI; functional connectivity; graph theory; modularity; RESTING-STATE FMRI; NETWORK MODULARITY; CEREBRAL ASYMMETRY; LATERALIZATION; ORGANIZATION; HANDEDNESS; DISTINCT; DENSITY; CORTEX; SIZE;
D O I
10.3390/sym14040833
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graph-theoretical approaches are increasingly used to study the brain and may enhance our understanding of its asymmetries. In this paper, we hypothesize that the structure of the left hemisphere is, on average, more modular. To this end, we analyzed resting-state functional magnetic resonance imaging data of 90 healthy subjects. We computed functional connectivity by Pearson's correlation coefficient, turned the matrix into an unweighted graph by keeping a certain percentage of the strongest connections, and quantified modularity separately for the subgraph formed by each hemisphere. Our results show that the left hemisphere is more modular. The result is consistent across a range of binarization thresholds, regardless of whether the two hemispheres are thresholded together or separately. This illustrates that graph-theoretical analysis can provide a robust characterization of lateralization of brain functional connectivity.
引用
收藏
页数:11
相关论文
共 60 条
[1]   Functional brain network modularity predicts response to cognitive training after brain injury [J].
Arnemann, Katelyn L. ;
Chen, Anthony J. -W. ;
Novakovic-Agopian, Tatjana ;
Gratton, Caterina ;
Nomura, Emi M. ;
D'Esposito, Mark .
NEUROLOGY, 2015, 84 (15) :1568-1574
[2]  
Bares M., 2006, PSYCHIATRIE, V4, P205
[3]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[4]  
Betzel RF, 2017, NETW NEUROSCI, V1, P42, DOI [10.1162/NETN_a_00002, 10.1162/netn_a_00002]
[5]   Lateralization of facial emotion processing and facial mimicry [J].
Blom, Stephanie S. A. H. ;
Aarts, Henk ;
Semin, Gun R. .
LATERALITY, 2020, 25 (03) :259-274
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]  
Broca Paul., 1861, Bulletins de la Societes d'Anthropologie, V2, P235, DOI DOI 10.3917/SCPO.PROST.2003.01.0235
[8]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[9]   The human hippocampus and spatial and episodic memory [J].
Burgess, N ;
Maguire, EA ;
O'Keefe, J .
NEURON, 2002, 35 (04) :625-641
[10]   Hemispheric Lateralization of Topological Organization in Structural Brain Networks [J].
Caeyenberghs, Karen ;
Leemans, Alexander .
HUMAN BRAIN MAPPING, 2014, 35 (09) :4944-4957