Glycomics meets artificial intelligence - Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed

被引:20
作者
Chocholova, Erika [1 ]
Bertok, Tomas [1 ]
Jane, Eduard [1 ]
Lorencova, Lenka [1 ]
Holazova, Alena [1 ]
Belicka, Ludmila [1 ]
Belicky, Stefan [1 ]
Mislovicova, Danica [1 ]
Vikartovska, Alica [1 ]
Imrich, Richard [2 ,3 ]
Kasak, Peter [4 ]
Tkac, Jan [1 ]
机构
[1] Slovak Acad Sci, Inst Chem, Dubravska Cesta 9, Bratislava 84538, Slovakia
[2] Slovak Acad Sci, Biomed Res Ctr, Dubravska Cesta 9, Bratislava 84505, Slovakia
[3] Natl Inst Rheumat Dis, Nabrezie 1 Krasku 4, Piestany 92112, Slovakia
[4] Qatar Univ, Ctr Adv Mat, Doha 2713, Qatar
基金
欧洲研究理事会;
关键词
Glycoprotein; Glycan; Immunoassay; Rheumatoid arthritis; Lectin; Biomarker; Machine learning algorithm; Feedforward artificial neural network; MACHINE LEARNING TECHNIQUES; DIAGNOSIS; GLYCOSYLATION; BIOMARKERS; CLASSIFICATION; INTERFACE;
D O I
10.1016/j.cca.2018.02.031
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN). We identified key RA markers, which can discriminate between healthy people and seropositive RA patients (serum containing autoantibodies) with accuracy of 83.3%. Combination of RA markers with glycan analysis provided much better discrimination accuracy of 92.5%. Immunoassays completely failed to identify seronegative RA patients (serum not containing autoantibodies), while glycan analysis correctly identified 43.8% of these patients. Further, we revealed other critical parameters for successful glycan analysis such as type of a sample, format of analysis and orientation of captured antibodies for glycan analysis.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [31] Potential Cancer Risk in Patients with Rheumatoid Arthritis: A Longitudinal Korean Population-Based Analysis
    Choi, Hyo Geun
    Kang, Ho Suk
    Lim, Hyun
    Kim, Joo-Hee
    Kim, Ji Hee
    Cho, Seong-Jin
    Nam, Eun Sook
    Min, Kyueng-Whan
    Park, Ha Young
    Kim, Nan Young
    Kwon, Mi Jung
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (06):
  • [32] IDENTIFICATION OF POTENTIAL BLOOD BIOMARKERS FOR JAK INHIBITOR TREATMENT-RELATED PATHWAYS THROUGH BULK RNA SEQUENCING ANALYSIS IN PATIENTS WITH RHEUMATOID ARTHRITIS
    Chen, H. H.
    Ko, T. M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1425 - 1426
  • [33] Identification of Tissue-Specific Expressed Hub Genes and Potential Drugs in Rheumatoid Arthritis Using Bioinformatics Analysis
    Xing, Xuewu
    Xia, Qun
    Gong, Baoqi
    Shen, Zhongyang
    Zhang, Yingze
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [34] Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks
    Yang, Mingyi
    Su, Yani
    Zheng, Haishi
    Xu, Ke
    Yuan, Qiling
    Cai, Yongsong
    Aihaiti, Yirixiati
    Xu, Peng
    [J]. BMC MUSCULOSKELETAL DISORDERS, 2023, 24 (01)
  • [35] Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks
    Mingyi Yang
    Yani Su
    Haishi Zheng
    Ke Xu
    Qiling Yuan
    Yongsong Cai
    Yirixiati Aihaiti
    Peng Xu
    [J]. BMC Musculoskeletal Disorders, 24
  • [36] Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome-wide gene expression profiling analysis
    Zhang, Rongqiang
    Yang, Xiaoli
    Wang, Jing
    Han, Lixin
    Yang, Aimin
    Zhang, Jie
    Zhang, Dandan
    Li, Baorong
    Li, Zhaofang
    Xiong, Yongmin
    [J]. MOLECULAR MEDICINE REPORTS, 2019, 19 (01) : 30 - 40
  • [37] LUNG CLUSTERING ANALYSIS-BASED PHENOTYPES OF RHEUMATOID ARTHRITIS USING ARTIFICIAL INTELLIGENCE-BASED TECHNOLOGY FOR CHEST COMPUTED TOMOGRAPHY
    Nakayama, Y.
    Nakashima, R.
    Handa, T.
    Tanizawa, K.
    Onizawa, H.
    Fujii, T.
    Murata, K.
    Murakami, K.
    Onishi, A.
    Tanaka, M.
    Shirakashi, M.
    Hiwa, R.
    Tsuji, H.
    Kitagori, K.
    Akizuki, S.
    Yoshifuji, H.
    Morinobu, A.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 843 - 844
  • [38] Potential of salivary biomarkers for diagnosing and prognosing rheumatoid arthritis: A systematic review and meta-analysis Salivary biomarkers in Rheumatoid Arthritis patients - A systematic review with Meta-analysis
    Pandarathodiyil, Anitha Krishnan
    Kasirajan, Hema Shree
    Vemuri, Suresh
    Sujai, G. V. Naga Sai
    Sivapathasundharam, B.
    Ramadoss, Ramya
    [J]. JOURNAL OF STOMATOLOGY ORAL AND MAXILLOFACIAL SURGERY, 2025, 126 (02)
  • [39] Drug survival of the first course of anti-TNF agents in patients with rheumatoid arthritis and seronegative spondyloarthritis: analysis from the Monitor Net database
    Scire, C. A.
    Caporali, R.
    Sarzi-Puttini, P.
    Frediani, B.
    di Franco, M.
    Tincani, A.
    Sinigaglia, L.
    Sfriso, P.
    Tirri, R.
    Bellis, E.
    Delsante, G.
    Porru, G.
    Salaffi, F.
    Giuggioli, D.
    Rossini, M.
    Todoerti, M.
    Bazzichi, L.
    Govoni, M.
    Gerli, R.
    Raschetti, R.
    Minisola, G.
    Montecucco, C.
    Todesco, S.
    [J]. CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2013, 31 (06) : 857 - 863
  • [40] Identification of novel biomarkers for the prediction of subclinical coronary artery atherosclerosis in patients with rheumatoid arthritis: an exploratory analysis
    Bathon, Joan M.
    Centola, Michael
    Liu, Xiaoqian
    Jin, Zhicheng
    Ji, Weihua
    Knowlton, Nicholas S.
    Ferraz-Amaro, Ivan
    Fu, Qin
    Giles, Jon T.
    Wasko, Mary Chester
    Stein, C. Michael
    Van Eyk, Jennifer E.
    [J]. ARTHRITIS RESEARCH & THERAPY, 2023, 25 (01)