Glycomics meets artificial intelligence - Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed

被引:20
作者
Chocholova, Erika [1 ]
Bertok, Tomas [1 ]
Jane, Eduard [1 ]
Lorencova, Lenka [1 ]
Holazova, Alena [1 ]
Belicka, Ludmila [1 ]
Belicky, Stefan [1 ]
Mislovicova, Danica [1 ]
Vikartovska, Alica [1 ]
Imrich, Richard [2 ,3 ]
Kasak, Peter [4 ]
Tkac, Jan [1 ]
机构
[1] Slovak Acad Sci, Inst Chem, Dubravska Cesta 9, Bratislava 84538, Slovakia
[2] Slovak Acad Sci, Biomed Res Ctr, Dubravska Cesta 9, Bratislava 84505, Slovakia
[3] Natl Inst Rheumat Dis, Nabrezie 1 Krasku 4, Piestany 92112, Slovakia
[4] Qatar Univ, Ctr Adv Mat, Doha 2713, Qatar
基金
欧洲研究理事会;
关键词
Glycoprotein; Glycan; Immunoassay; Rheumatoid arthritis; Lectin; Biomarker; Machine learning algorithm; Feedforward artificial neural network; MACHINE LEARNING TECHNIQUES; DIAGNOSIS; GLYCOSYLATION; BIOMARKERS; CLASSIFICATION; INTERFACE;
D O I
10.1016/j.cca.2018.02.031
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN). We identified key RA markers, which can discriminate between healthy people and seropositive RA patients (serum containing autoantibodies) with accuracy of 83.3%. Combination of RA markers with glycan analysis provided much better discrimination accuracy of 92.5%. Immunoassays completely failed to identify seronegative RA patients (serum not containing autoantibodies), while glycan analysis correctly identified 43.8% of these patients. Further, we revealed other critical parameters for successful glycan analysis such as type of a sample, format of analysis and orientation of captured antibodies for glycan analysis.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [21] EXPLORING THE USE OF ARTIFICIAL INTELLIGENCE IN PREDICTING RHEUMATOID ARTHRITIS, BASED ON EXTREMITY MR SCANS IN EARLY ARTHRITIS AND CLINICALLY SUSPECT ARTHRALGIA PATIENTS
    Li, Y.
    Shamonin, D.
    Hassanzadeh, T.
    Reijnierse, M.
    Van der Helm-Van Mil, A.
    Stoel, B.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1 - 2
  • [22] Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review
    Al-Maini, Mustafa
    Maindarkar, Mahesh
    Kitas, George D.
    Khanna, Narendra N.
    Misra, Durga Prasanna
    Johri, Amer M.
    Mantella, Laura
    Agarwal, Vikas
    Sharma, Aman
    Singh, Inder M.
    Tsoulfas, George
    Laird, John R.
    Faa, Gavino
    Teji, Jagjit
    Turk, Monika
    Viskovic, Klaudija
    Ruzsa, Zoltan
    Mavrogeni, Sophie
    Rathore, Vijay
    Miner, Martin
    Kalra, Manudeep K.
    Isenovic, Esma R.
    Saba, Luca
    Fouda, Mostafa M.
    Suri, Jasjit S.
    RHEUMATOLOGY INTERNATIONAL, 2023, 43 (11) : 1965 - 1982
  • [23] SPEED OF RESPONSE MATTERS: POST-HOC ANALYSIS OF PATIENTS WITH EARLY SERONEGATIVE RHEUMATOID ARTHRITIS INCLUDED IN THE CARERA TRIAL
    Pazmino, S.
    Westhovens, R.
    Stouten, V.
    Bertrand, D.
    Doumen, M.
    Joly, J.
    De Meyst, E.
    Diederik, D. C.
    Verschueren, P.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 409 - 410
  • [24] Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review
    Mustafa Al-Maini
    Mahesh Maindarkar
    George D. Kitas
    Narendra N. Khanna
    Durga Prasanna Misra
    Amer M. Johri
    Laura Mantella
    Vikas Agarwal
    Aman Sharma
    Inder M. Singh
    George Tsoulfas
    John R. Laird
    Gavino Faa
    Jagjit Teji
    Monika Turk
    Klaudija Viskovic
    Zoltan Ruzsa
    Sophie Mavrogeni
    Vijay Rathore
    Martin Miner
    Manudeep K. Kalra
    Esma R. Isenovic
    Luca Saba
    Mostafa M. Fouda
    Jasjit S. Suri
    Rheumatology International, 2023, 43 : 1965 - 1982
  • [25] Identification of Potential Serum Biomarkers for Rheumatoid Arthritis by High-Resolution Quantitative Proteomic Analysis
    Yongjing Cheng
    Yuling Chen
    Xiaolin Sun
    Yuhui Li
    Cibo Huang
    Haiteng Deng
    Zhanguo Li
    Inflammation, 2014, 37 : 1459 - 1467
  • [26] Exploration and Identification of Potential Biomarkers and Immune Cell Infiltration Analysis in Synovial Tissue of Rheumatoid Arthritis
    Liu, Yan
    Hu, Huifang
    Chen, Tao
    Zhu, Chenxi
    Sun, Rui
    Xu, Jiayi
    Liu, Yi
    Dai, Lunzhi
    Zhao, Yi
    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2025, 28 (02)
  • [27] Identification of potential peripheral blood diagnostic biomarkers for patients with juvenile idiopathic arthritis by bioinformatics analysis
    Tu, Zhi-qiang
    Xue, Hai-yan
    Chen, Wei
    Cao, Lan-fang
    Zhang, Wei-qi
    RHEUMATOLOGY INTERNATIONAL, 2017, 37 (03) : 423 - 434
  • [28] Identification of potential ferroptosis key genes and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis
    Fan, Yihua
    Li, Yuan
    Fu, Xiaoyan
    Peng, Jing
    Chen, Yuchi
    Chen, Tao
    Zhang, Di
    HELIYON, 2023, 9 (11)
  • [29] Suboptimal cardiovascular risk factor identification and management in patients with rheumatoid arthritis: a cohort analysis
    Shailey S Desai
    James D Myles
    Mariana J Kaplan
    Arthritis Research & Therapy, 14
  • [30] Identification of the candidate genes of diagnosing rheumatoid arthritis using the single-cell sequencing technology and T cell subclusters analysis of patients with rheumatoid arthritis
    Liu, Yajing
    Fan, Shaoguang
    Meng, Shan
    ARCHIVES OF RHEUMATOLOGY, 2023, 38 (01) : 109 - 118