Glycomics meets artificial intelligence - Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed

被引:20
作者
Chocholova, Erika [1 ]
Bertok, Tomas [1 ]
Jane, Eduard [1 ]
Lorencova, Lenka [1 ]
Holazova, Alena [1 ]
Belicka, Ludmila [1 ]
Belicky, Stefan [1 ]
Mislovicova, Danica [1 ]
Vikartovska, Alica [1 ]
Imrich, Richard [2 ,3 ]
Kasak, Peter [4 ]
Tkac, Jan [1 ]
机构
[1] Slovak Acad Sci, Inst Chem, Dubravska Cesta 9, Bratislava 84538, Slovakia
[2] Slovak Acad Sci, Biomed Res Ctr, Dubravska Cesta 9, Bratislava 84505, Slovakia
[3] Natl Inst Rheumat Dis, Nabrezie 1 Krasku 4, Piestany 92112, Slovakia
[4] Qatar Univ, Ctr Adv Mat, Doha 2713, Qatar
基金
欧洲研究理事会;
关键词
Glycoprotein; Glycan; Immunoassay; Rheumatoid arthritis; Lectin; Biomarker; Machine learning algorithm; Feedforward artificial neural network; MACHINE LEARNING TECHNIQUES; DIAGNOSIS; GLYCOSYLATION; BIOMARKERS; CLASSIFICATION; INTERFACE;
D O I
10.1016/j.cca.2018.02.031
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN). We identified key RA markers, which can discriminate between healthy people and seropositive RA patients (serum containing autoantibodies) with accuracy of 83.3%. Combination of RA markers with glycan analysis provided much better discrimination accuracy of 92.5%. Immunoassays completely failed to identify seronegative RA patients (serum not containing autoantibodies), while glycan analysis correctly identified 43.8% of these patients. Further, we revealed other critical parameters for successful glycan analysis such as type of a sample, format of analysis and orientation of captured antibodies for glycan analysis.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [1] The Diversity of Laboratory and Radiological Characteristics Between Seropositive and Seronegative Rheumatoid Arthritis Patients
    Meka, Vjollca Sahatciu
    Rexhepi, Sylejman
    Kerliu, Suzana Manxhuka
    Murtezani, Ardiana
    Rexhepi, Mjellma
    Rexhepi, Blerta
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2014, 32 (04) : S42 - S42
  • [2] SERONEGATIVE AND SEROPOSITIVE PATIENTS WITH RHEUMATOID-ARTHRITIS - DIFFERENT PATTERNS OF STRESS COPING
    GUNTHER, V
    MUR, E
    KOPP, M
    PSYCHOTHERAPIE PSYCHOSOMATIK MEDIZINISCHE PSYCHOLOGIE, 1994, 44 (05) : 169 - 171
  • [3] In silico analysis of serum miRNA profiles in seronegative and seropositive rheumatoid arthritis patients by small RNA sequencing
    He, Xiao-Hong
    Xiao, Yun-Ting
    Chen, Wen-Ying
    Wang, Mao-Jie
    Wu, Xiao-Dong
    Mei, Li-Yan
    Gao, Kai-Xin
    Huang, Qing-Chun
    Huang, Run-Yue
    Chen, Xiu-Min
    PEERJ, 2023, 11
  • [4] Patients with seronegative rheumatoid arthritis have a different phenotype than seropositive patients: A clinical and ultrasound study
    Carbonell-Bobadilla, Natalia
    Soto-Fajardo, Carina
    Amezcua-Guerra, Luis M.
    Batres-Marroquin, Ana Beatriz
    Vargas, Tania
    Hernandez-Diazcouder, Adrian
    Jimenez-Rojas, Valentin
    Medina-Garcia, Ana Cristina
    Pineda, Carlos
    Silveira, Luis H.
    FRONTIERS IN MEDICINE, 2022, 9
  • [5] Comparison of healthcare resource utilization and medical costs between patients with seropositive and seronegative rheumatoid arthritis
    Kim, Hyoungyoung
    Cho, Soo-Kyung
    Choi, Seongmi
    Im, Seul Gi
    Jung, Sun-Young
    Jang, Eun Jin
    Sung, Yoon-Kyoung
    THERAPEUTIC ADVANCES IN MUSCULOSKELETAL DISEASE, 2021, 13
  • [6] Serum metabolomic and lipidomic profiling identifies diagnostic biomarkers for seropositive and seronegative rheumatoid arthritis patients
    Hemi Luan
    Wanjian Gu
    Hua Li
    Zi Wang
    Lu Lu
    Mengying Ke
    Jiawei Lu
    Wenjun Chen
    Zhangzhang Lan
    Yanlin Xiao
    Jinyue Xu
    Yi Zhang
    Zongwei Cai
    Shijia Liu
    Wenyong Zhang
    Journal of Translational Medicine, 19
  • [7] Serum metabolomic and lipidomic profiling identifies diagnostic biomarkers for seropositive and seronegative rheumatoid arthritis patients
    Luan, Hemi
    Gu, Wanjian
    Li, Hua
    Wang, Zi
    Lu, Lu
    Ke, Mengying
    Lu, Jiawei
    Chen, Wenjun
    Lan, Zhangzhang
    Xiao, Yanlin
    Xu, Jinyue
    Zhang, Yi
    Cai, Zongwei
    Liu, Shijia
    Zhang, Wenyong
    JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [8] Artificial intelligence in rheumatoid arthritis: potential applications and future implications
    Gilvaz, Vinit J.
    Reginato, Anthony M.
    FRONTIERS IN MEDICINE, 2023, 10
  • [9] Analysis of gut microbiota and metabolites in patients with rheumatoid arthritis and identification of potential biomarkers
    Chen, Yumei
    Ma, Chiyu
    Liu, Lixiong
    He, Jingquan
    Zhu, Chengxin
    Zheng, Fengping
    Dai, Weier
    Hong, Xiaoping
    Liu, Dongzhou
    Tang, Donge
    Dai, Yong
    AGING-US, 2021, 13 (20): : 23689 - 23701
  • [10] UNDERSTANDING DISEASE PREVALENCE AND COMORBIDITY PROFILES AMONG SEROPOSITIVE AND SERONEGATIVE RHEUMATOID ARTHRITIS PATIENTS IN PUERTO RICO
    Arenal-Cruz, F.
    Jobson, G.
    Villanueva, E.
    Zhu, J.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1340 - 1340