Signal transmission in multilayer asynchronous neural networks

被引:0
|
作者
Kobayashi, Wataru [1 ]
Oku, Makito [2 ]
Aihara, Kazuyuki [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Tokyo 1538505, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1538505, Japan
来源
PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11) | 2011年
关键词
Neural Networks; Asynchronous States; Active Decorrelation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is believed that common input to nearby neurons leads to their synchronous spiking. However, recent studies have shown that recurrent neural networks can generate an asynchronous state characterized by low mean spiking correlations despite substantial amounts of shared input. The asynchronous state is generated by the interaction of excitatory and inhibitory populations, which is called active decorrelation. Here, we investigate the advantage of the active decorrelation on signal transmission in multilayer neural networks. The results of numerical simulations show that the active decorrelation is suitable for transmission of rate code because it can suppress the layer-by-layer growth of correlation.
引用
收藏
页码:334 / 337
页数:4
相关论文
共 50 条
  • [41] Identification Inverted Pendulum System Using Multilayer and Polynomial Neural Networks
    Orozco, L. M. L.
    Lomeli, G. R.
    Moreno, G. J. R.
    Perea, M. T.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (05) : 1569 - 1576
  • [42] Classification of normal and abnormal electrogastrograms using multilayer feedforward neural networks
    Z. Lin
    J. Maris
    L. Hermans
    J. Vandewalle
    J. D. Z. Chen
    Medical and Biological Engineering and Computing, 1997, 35 : 199 - 206
  • [43] Training of multilayer perceptron neural networks by using cellular genetic algorithms
    Orozco-Monteagudo, M.
    Taboada-Crispi, A.
    Del Toro-Almenares, A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 389 - 398
  • [44] A novel activation function for multilayer feed-forward neural networks
    Njikam, Aboubakar Nasser Samatin
    Zhao, Huan
    APPLIED INTELLIGENCE, 2016, 45 (01) : 75 - 82
  • [45] Wind power prediction using recurrent multilayer Perceptron neural networks
    Li, SH
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 2325 - 2330
  • [46] The No-Prop algorithm: A new learning algorithm for multilayer neural networks
    Widrow, Bernard
    Greenblatt, Aaron
    Kim, Youngsik
    Park, Dookun
    NEURAL NETWORKS, 2013, 37 : 180 - 186
  • [47] PARTIAL DISCHARGE PATTERN-CLASSIFICATION USING MULTILAYER NEURAL NETWORKS
    SATISH, L
    GURURAJ, BI
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1993, 140 (04): : 323 - 330
  • [48] Classification of normal and abnormal electrogastrograms using multilayer feedforward neural networks
    Lin, Z
    Maris, J
    Hermans, L
    Vandewalle, J
    Chen, JDZ
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1997, 35 (03) : 199 - 206
  • [49] Application of neural networks in modelling of the transmission hydraulic actuator
    Jin, Tao-tao
    Li, Ping-kang
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2009, 8 (02) : 148 - 154
  • [50] Dual stream neural networks for brain signal classification
    Kuang, Dongyang
    Michoski, Craig
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (01)