Controllability of Semilinear Differential Systems with Nonlocal Initial Conditions in Banach Spaces

被引:62
作者
Chang, Y. K. [1 ]
Nieto, J. J. [2 ]
Li, W. S. [1 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
基金
中国国家自然科学基金;
关键词
Controllability; Differential systems; Nonlocal initial conditions; Fixed points; EVOLUTION-EQUATIONS; INFINITE DELAY; INCLUSIONS; EXISTENCE;
D O I
10.1007/s10957-009-9535-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this note, we establish a sufficient condition for the controllability of a first-order semilinear differential system with nonlocal initial conditions in Banach spaces. The approach used is the Sadovskii fixed-point theorem combined with operator semigroups. Particularly, the compactness of the operator semigroups is not needed in this article.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 22 条
[1]  
[Anonymous], APPL MATH SCI
[2]   Remarks on the paper "Controllability of second order differential inclusion in Banach spaces" [J. Math. Anal. Appl. 285 (2003) 537-550] [J].
Balachandran, K. ;
Kim, J. -H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :746-749
[3]  
Balachandran K, 2004, TAIWAN J MATH, V8, P689
[4]  
Benchohra M, 2006, Z ANAL ANWEND, V25, P311
[5]   Controllability results for functional semilinear differential inclusions in Frechet spaces [J].
Benchohra, M ;
Ouahab, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (03) :405-423
[6]   Controllability of semilinear boundary problems with nonlocal initial conditions [J].
Boulite, S ;
Idrissi, A ;
Maniar, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (02) :566-578
[7]  
Byszewski L., 1991, J APPL MATH STOCH AN, V162, P49
[8]   Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces [J].
Chang, Y. -K. ;
Chalishajar, D. N. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (05) :499-507
[9]   Controllability of impulsive functional differential systems with infinite delay in Banach spaces [J].
Chang, Yong-Kui .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1601-1609
[10]   Controllability of evolution differential inclusions in Banach spaces [J].
Chang, Yong-Kui ;
Li, Wan-Tong ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (02) :623-632