Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation

被引:434
作者
Dong, Xiongbo [1 ,2 ]
Ren, Bangxing [2 ]
Sun, Zhiming [1 ]
Li, Chunquan [1 ]
Zhang, Xiangwei [1 ]
Kong, Minghao [2 ]
Zheng, Shuilin [1 ]
Dionysiou, Dionysios D. [2 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] Univ Cincinnati, Dept Chem & Environm Engn ChEE, Environm Engn & Sci Program, Cincinnati, OH 45221 USA
关键词
Copper ferrite; Kaolinite; Peroxymonosulfate; Sulfate radical; BPA; HETEROGENEOUS ACTIVATION; AQUEOUS-SOLUTION; ADVANCED OXIDATION; PHOTOCATALYTIC ACTIVITY; ORGANIC POLLUTANTS; HYDROXYL RADICALS; SULFATE; REMOVAL; PERSULFATE; WATER;
D O I
10.1016/j.apcatb.2019.04.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, CuFe2O4/kaolinite catalysts were fabricated through a facile citrate combustion method and were evaluated for their efficiency to activate peroxymonosulfate (PMS) towards the destruction of bisphenol A (BPA). The prepared catalysts were systematically characterized to explore the relationship between their characteristics and catalytic activities. In general, higher specific surface area, larger pore volume, more hydroxyl groups, and more accessible reactive sites of 40%-CuFe2O4/Icaolinite contributed to the greater catalytic activity in peroxymonosulfate activation for BPA degradation compared to bare CuFe2O4. Monodispersed CuFe2O4 nano particles were uniformly anchored on the surface of kaolinite with Fe-O-Al bond, which prevented leaching of metal ions and contributed to the excellent reusability. The sulfate radicals produced in the CuFe2O4/kaolinite/PMS system were proved as the predominant radical species through electron spin resonance (ESR) and radical quenching experiments. Based on the results of X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance - Fourier transform infrared spectra (ATR-FTIR), two main possible pathways of sulfate radicals generation were proposed: the generation and decomposition of equivalent to Cu(II)-(HO)OSO3- (Cu(II)/Cu(III) and Cu (III)/Cu(II) redox reaction) and the oxidation of equivalent to Fe(II). Moreover, the BPA degradation pathway was proposed through the identification of transformation products. This work provides an interesting insight for PMS activation by the high-efficient natural mineral-based catalysts for wastewater reclamation.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
  • [1] CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation
    Cao, Xiao-qiang
    Xiao, Fei
    Lyu, Zhi-wen
    Xie, Xiao-yu
    Zhang, Zhi-xing
    Dong, Xing
    Wang, Jun-xiang
    Lyu, Xian-jun
    Zhang, Yi-zhen
    Liang, Yue
    JOURNAL OF WATER PROCESS ENGINEERING, 2021, 44
  • [2] Degradation of bisphenol S by peroxymonosulfate activation through monodispersed CoFe2O4 nanoparticles anchored on natural palygorskite
    Li, Yabin
    Chen, Zhonglin
    Qi, Jingyao
    Kang, Jing
    Shen, Jimin
    Yan, Pengwei
    Wang, Weiqiang
    Bi, Lanbo
    Zhang, Xiaoxiao
    Zhu, Xinwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 277
  • [3] Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A
    Chen, Zhiqiang
    Wang, Luyao
    Xu, Haodan
    Wen, Qinxue
    CHEMICAL ENGINEERING JOURNAL, 2020, 389
  • [4] Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals
    Qin, Wenxiu
    Fang, Guodong
    Wang, Yujun
    Zhou, Dongmei
    CHEMICAL ENGINEERING JOURNAL, 2018, 348 : 526 - 534
  • [5] Sunset yellow degradation by ultrasound/peroxymonosulfate/CuFe2O4: Influential factors and degradation processes
    Feizi, Rouzhan
    Ahmad, Mehdi
    Jorfi, Sahand
    Ghanbari, Farshid
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (06) : 886 - 893
  • [6] Magnetic CuFe2O4 nanoparticles immobilized on mesoporous alumina as highly efficient peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride
    Li, Qingyong
    Zhang, Jiayao
    Xu, Jiahui
    Cheng, Yunran
    Yang, Xiaoting
    He, Jiawen
    Liu, Yujun
    Chen, Jiayi
    Qiu, Bing
    Zhong, Yongming
    Sun, Rongrong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 342
  • [7] Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin
    Wang, Yuru
    Tian, Dongfan
    Chu, Wei
    Li, Minrui
    Lu, Xinwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 212 : 536 - 544
  • [8] Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate
    Tan, Ye
    Li, Chunquan
    Sun, Zhiming
    Bian, Runze
    Dong, Xiongbo
    Zhang, Xiangwei
    Zheng, Shuilin
    CHEMICAL ENGINEERING JOURNAL, 2020, 388
  • [9] Efficient catalytic degradation of bisphenol A coordinated with peroxymonosulfate via anchoring monodispersed zero-valent iron on natural kaolinite
    Li, Chunquan
    Yang, Shanshan
    Bian, Runze
    Tan, Ye
    Zhang, Xiangwei
    Zheng, Shuilin
    Sun, Zhiming
    CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [10] The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process
    Xu, Yin
    Ai, Jia
    Zhang, Hui
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 309 : 87 - 96