Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach

被引:11
作者
Chung, Joowon [1 ,2 ]
Kim, Doyun [1 ,2 ]
Choi, Jongmun [1 ,2 ]
Yune, Sehyo [1 ,2 ]
Song, Kyungdoo [1 ,2 ]
Kim, Seonkyoung [1 ,2 ]
Chua, Michelle [1 ,2 ]
Succi, Marc D. [1 ,2 ]
Conklin, John [1 ,2 ]
Longo, Maria G. Figueiro [1 ,2 ]
Ackman, Jeanne B. [1 ,2 ]
Petranovic, Milena [1 ,2 ]
Lev, Michael H. [1 ,2 ]
Do, Synho [1 ,2 ]
机构
[1] Massachusetts Gen Brigham, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
关键词
D O I
10.1038/s41598-022-24721-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Risk prediction requires comprehensive integration of clinical information and concurrent radiological findings. We present an upgraded chest radiograph (CXR) explainable artificial intelligence (xAI) model, which was trained on 241,723 well-annotated CXRs obtained prior to the onset of the COVID-19 pandemic. Mean area under the receiver operating characteristic curve (AUROC) for detection of 20 radiographic features was 0.955 (95% CI 0.938-0.955) on PA view and 0.909 (95% CI 0.890-0.925) on AP view. Coexistent and correlated radiographic findings are displayed in an interpretation table, and calibrated classifier confidence is displayed on an AI scoreboard. Retrieval of similar feature patches and comparable CXRs from a Model-Derived Atlas provides justification for model predictions. To demonstrate the feasibility of a fine-tuning approach for efficient and scalable development of xAI risk prediction models, we applied our CXR xAI model, in combination with clinical information, to predict oxygen requirement in COVID-19 patients. Prediction accuracy for high flow oxygen (HFO) and mechanical ventilation (MV) was 0.953 and 0.934 at 24 h and 0.932 and 0.836 at 72 h from the time of emergency department (ED) admission, respectively. Our CXR xAI model is auditable and captures key pathophysiological manifestations of cardiorespiratory diseases and cardiothoracic comorbidities. This model can be efficiently and broadly applied via a fine-tuning approach to provide fully automated risk and outcome predictions in various clinical scenarios in real-world practice.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Automated storage and retrieval of thin-section CT images to assist diagnosis: System description and preliminary assessment [J].
Aisen, AM ;
Broderick, LS ;
Winer-Muram, H ;
Brodley, CE ;
Kak, AC ;
Pavlopoulou, C ;
Dy, J ;
Shyu, CR ;
Marchiori, A .
RADIOLOGY, 2003, 228 (01) :265-270
[2]   Correlation of chest radiography findings with the severity and progression of COVID-19 pneumonia [J].
Al-Smadi, Anas S. ;
Bhatnagar, Akash ;
Ali, Rehan ;
Lewis, Nicholas ;
Johnson, Samuel .
CLINICAL IMAGING, 2021, 71 :17-23
[3]   Severe Covid-19 [J].
Berlin, David A. ;
Gulick, Roy M. ;
Martinez, Fernando J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (25) :2451-2460
[4]   Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments [J].
Casiraghi, Elena ;
Malchiodi, Dario ;
Trucco, Gabriella ;
Frasca, Marco ;
Cappelletti, Luca ;
Fontana, Tommaso ;
Esposito, Alessandro Andrea ;
Avola, Emanuele ;
Jachetti, Alessandro ;
Reese, Justin ;
Rizzi, Alessandro ;
Robinson, Peter N. ;
Valentini, Giorgio .
IEEE ACCESS, 2020, 8 (08) :196299-196325
[5]   Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT [J].
Choe, Jooae ;
Hwang, Hye Jeon ;
Seo, Joon Beom ;
Lee, Sang Min ;
Yun, Jihye ;
Kim, Min-Ju ;
Jeong, Jewon ;
Lee, Youngsoo ;
Jin, Kiok ;
Park, Rohee ;
Kim, Jihoon ;
Jeon, Howook ;
Kim, Namkug ;
Yi, Jaeyoun ;
Yu, Donghoon ;
Kim, Byeongsoo .
RADIOLOGY, 2022, 302 (01) :187-197
[6]   Rates and predictive factors of return to the emergency department following an initial release by the emergency department for acute heart failure [J].
Claret, Pierre-Geraud ;
Calder, Lisa A. ;
Stiell, Ian G. ;
Yan, Justin W. ;
Clement, Catherine M. ;
Borgundvaag, Bjug ;
Forster, Alan J. ;
Perry, Jeffrey J. ;
Rowe, Brian H. .
CANADIAN JOURNAL OF EMERGENCY MEDICINE, 2018, 20 (02) :222-229
[7]   COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? [J].
Fan, Eddy ;
Beitler, Jeremy R. ;
Brochard, Laurent ;
Calfee, Carolyn S. ;
Ferguson, Niall D. ;
Slutsky, Arthur S. ;
Brodie, Daniel .
LANCET RESPIRATORY MEDICINE, 2020, 8 (08) :816-821
[8]  
Ghassemi M, 2021, LANCET DIGIT HEALTH, V3, pE745, DOI 10.1016/S2589-7500(21)00208-9
[9]   Advances in medical imaging to evaluate acute respiratory distress syndrome [J].
Huang, Shan ;
Wang, Yuan-Cheng ;
Ju, Shenghong .
CHINESE JOURNAL OF ACADEMIC RADIOLOGY, 2022, 5 (01) :1-9
[10]   Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs [J].
Hwang, Eui Jin ;
Park, Sunggyun ;
Jin, Kwang-Nam ;
Kim, Jung Im ;
Choi, So Young ;
Lee, Jong Hyuk ;
Goo, Jin Mo ;
Aum, Jaehong ;
Yim, Jae-Joon ;
Cohen, Julien G. ;
Ferretti, Gilbert R. ;
Park, Chang Min ;
Kim, Dong Hyeon ;
Woo, Sungmin ;
Choi, Wonseok ;
Hwang, In Pyung ;
Song, Yong Sub ;
Lim, Jiyeon ;
Kim, Hyungjin ;
Wi, Jae Yeon ;
Oh, Su Suk ;
Kang, Mi-Jin ;
Lee, Nyoung Keun ;
Yoo, Jin Young ;
Suh, Young Joo .
JAMA NETWORK OPEN, 2019, 2 (03) :e191095