Editorial: Efficient AI in particle physics and astrophysics

被引:0
作者
Duarte, Javier [1 ]
Liu, Mia [2 ]
Ngadiuba, Jennifer [3 ]
Cuoco, Elena [4 ,5 ]
Thaler, Jesse [6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Purdue Univ, Dept Phys, W Lafayette, IN USA
[3] Fermilab Natl Accelerator Lab, Particle Phys Div, Batavia, IL USA
[4] European Gravitat Observ, Cascina, Italy
[5] Scuola Normale Super Pisa, Pisa, Italy
[6] MIT, Ctr Theoret Phys, Cambridge, MA USA
[7] NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA USA
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2022年 / 5卷
基金
美国国家科学基金会;
关键词
efficiency; FPGA; physics-inspired; neural network; high energy physics; particle astrophysics; pruning; quantization;
D O I
10.3389/frai.2022.999173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页数:3
相关论文
共 5 条
  • [1] Amrouche S, 2020, SPRING SER CHALLENGE, P231, DOI 10.1007/978-3-030-29135-8_9
  • [2] CMS Collaboration, 2020, CERNLHCC2020004 CMST
  • [3] Fast inference of deep neural networks in FPGAs for particle physics
    Duarte, J.
    Han, S.
    Harris, P.
    Jindariani, S.
    Kreinar, E.
    Kreis, B.
    Ngadiuba, J.
    Pierini, M.
    Rivera, R.
    Tran, N.
    Wu, Z.
    [J]. JOURNAL OF INSTRUMENTATION, 2018, 13
  • [4] Schaub NJ, 2020, Arxiv, DOI arXiv:2006.02909
  • [5] Sze V., 2020, Synthesis Lectures on Computer Architecture (SLCA), V15, P1