Performance prediction of fuel cells using long short-term memory recurrent neural network

被引:42
|
作者
Zheng, Lu [1 ]
Hou, Yongping [1 ]
Zhang, Tao [1 ]
Pan, Xiangmin [2 ]
机构
[1] Tongji Univ, Sch Automot Studies, Jiading Campus,4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Shanghai Motor Vehicle Inspect Certificat & Techn, Lab Hydrogen & Fuel Cell Inspect & Res, Shanghai, Peoples R China
关键词
aging test; fuel cells; long short-term memory network; performance prediction; polarization curve; LIFE-PREDICTION; MODEL; DEGRADATION; PEMFC; EQUATION;
D O I
10.1002/er.6443
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Performance prediction of proton-exchange membrane fuel cell (PEMFC) under dynamic conditions, especially for vehicle applications, is increasingly become the focus of attention. This article proposes a performance prediction method of PEMFC using long short-term memory (LSTM) recurrent neural network (RNN). In this article, polarization curve (current-voltage curve) and voltage degradation curve (current-time curve) are adopted as the main performance indexes of PEMFC. Both polarization curve prediction and performance degradation prediction of PEMFC can be effectively implemented based on the LSTM method. To investigate the voltage losses law of experimental and predicted results, the paper introduces an empirical equation of polarization curve. The perfect match between the experimental and predicted polarization losses of PEMFC can further validate the prediction performance of LSTM method. The proposed prediction method is validated by the PEMFC polarization curve data obtained from the designed aging experiment of a 4 kW stack operated under dynamic loading cycling situation during 600 hours. Then, LSTM network is compared with traditional RNN and back-propagation neural network (BPNN) to prove its superiority. The minimum values of root-mean-square error (RMSE) and the mean absolute percentage error (MAPE) of LSTM network with different training data are 0.0088 and 0.0101, respectively. All the coefficient of determination (R-2) of LSTM model with different training data is over 0.95, which is close to 1.0. The prediction accuracy of LSTM network is higher than that of two other networks. The result indicates that LSTM network outperforms two other networks in PEMFC performance prediction. Hence, the prediction method based on LSTM network is very suitable for PEMFC performance prediction.
引用
收藏
页码:9141 / 9161
页数:21
相关论文
共 50 条
  • [1] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [2] Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network
    Gallina, Viola
    Lingitz, Lukas
    Breitschopf, Johannes
    Zudor, Elisabeth
    Sihn, Wilfried
    10TH CIRP SPONSORED CONFERENCE ON DIGITAL ENTERPRISE TECHNOLOGIES (DET 2020) - DIGITAL TECHNOLOGIES AS ENABLERS OF INDUSTRIAL COMPETITIVENESS AND SUSTAINABILITY, 2021, 54 : 136 - 141
  • [3] Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization
    Chen, Dongfang
    Wu, Wenlong
    Chang, Kuanyu
    Li, Yuehua
    Pei, Pucheng
    Xu, Xiaoming
    ENERGY, 2023, 285
  • [4] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [5] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [6] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [7] Predicting Short-term Traffic Flow by Long Short-Term Memory Recurrent Neural Network
    Tian, Yongxue
    Pan, Li
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 153 - 158
  • [8] Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network
    Yeon, Kyuhwan
    Min, Kyunghan
    Shin, Jaewook
    Sunwoo, Myoungho
    Han, Manbae
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2019, 20 (04) : 713 - 722
  • [9] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [10] Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network
    Kyuhwan Yeon
    Kyunghan Min
    Jaewook Shin
    Myoungho Sunwoo
    Manbae Han
    International Journal of Automotive Technology, 2019, 20 : 713 - 722