Stack generalized deep ensemble learning for retinal layer segmentation in Optical Coherence Tomography images

被引:13
作者
Anoop, B. N. [1 ]
Pavan, Rakesh [2 ]
Girish, G. N. [1 ,3 ]
Kothari, Abhishek R. [4 ]
Rajan, Jeny [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Surathkal, India
[2] Natl Inst Technol Karnataka, Dept Informat Technol, Surathkal, India
[3] Harvard Univ, Harvard Med Sch, Wellman Ctr Photomed, Boston, MA 02115 USA
[4] Pink City Eye & Retina Ctr, Jaipur, Rajasthan, India
关键词
Image segmentation; Optical Coherence Tomography; Retinal layer segmentation; Deep learning; Ensemble learning; Convolutional neural networks; NERVE-FIBER LAYER; AUTOMATIC SEGMENTATION; OCT IMAGES; SURFACE SEGMENTATION; BOUNDARIES; CLASSIFICATION;
D O I
10.1016/j.bbe.2020.07.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Segmentation of retinal layers is a vital and important step in computerized processing and the study of retinal Optical Coherence Tomography (OCT) images. However, automatic segmentation of retinal layers is challenging due to the presence of noise, widely varying reflectivity of image components, variations in morphology and alignment of layers in the presence of retinal diseases. In this paper, we propose a Fully Convolutional Network (FCN) termed as DelNet based on a deep ensemble learning approach to selectively segment retinal layers from OCT scans. The proposed model is tested on a publicly available DUKE DME dataset. Comparative analysis with other state-of-the-art methods on a benchmark dataset shows that the performance of DelNet is superior to other methods. (c) 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1343 / 1358
页数:16
相关论文
共 61 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]  
Anoop B, 2019, ADV CLASSIFICATION T, P286, DOI DOI 10.4018/978-1-5225-7796-6.CH013
[3]   Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images [J].
Antony, Bhavna ;
Abramoff, Michael D. ;
Tang, Li ;
Ramdas, Wishal D. ;
Vingerling, Johannes R. ;
Jansonius, Nomdo M. ;
Lee, Kyungmoo ;
Kwon, Young H. ;
Sonka, Milan ;
Garvin, Mona K. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (08) :2403-2416
[4]   Three-Dimensional Segmentation of Fluid-Associated Abnormalities in Retinal OCT: Probability Constrained Graph-Search-Graph-Cut [J].
Chen, Xinjian ;
Niemeijer, Meindert ;
Zhang, Li ;
Lee, Kyungmoo ;
Abramoff, Michael D. ;
Sonka, Milan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (08) :1521-1531
[5]   Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema [J].
Chiu, Stephanie J. ;
Allingham, Michael J. ;
Mettu, Priyatham S. ;
Cousins, Scott W. ;
Izatt, Joseph A. ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (04) :1172-1194
[6]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[7]  
Chollet F., 2015, KERAS
[8]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[9]   Ultrahigh-resolution ophthalmic optical coherence tomography [J].
Drexler, W ;
Morgner, U ;
Ghanta, RK ;
Kärtner, FX ;
Schuman, JS ;
Fujimoto, JG .
NATURE MEDICINE, 2001, 7 (04) :502-507
[10]   OCT Segmentation: Integrating Open Parametric Contour Model of the Retinal Layers and Shape Constraint to the Mumford-Shah Functional [J].
Duan, Jinming ;
Xie, Weicheng ;
Liu, Ryan Wen ;
Tench, Christopher ;
Gottlob, Irene ;
Proudlock, Frank ;
Bai, Li .
SHAPE IN MEDICAL IMAGING, SHAPEMI 2018, 2018, 11167 :178-188