Lineability of the set of bounded linear non-absolutely summing operators

被引:24
作者
Botelho, Geraldo [2 ]
Diniz, Diogo [3 ]
Pellegrino, Daniel [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Uberlandia, Fac Matemat, BR-38400902 Uberlandia, MG, Brazil
[3] UAME UFCG, BR-58109970 Campina Grande, PB, Brazil
关键词
Lineability; Absolutely summing operators; INDECOMPOSABLE BANACH-SPACE; POLYNOMIALS;
D O I
10.1016/j.jmaa.2009.03.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we solve, except for extremely pathological cases, a question posed by Puglisi and Seoane-Sepulveda on the lineability of the set of bounded linear non-absolutely summing operators. We also show how the idea of the proof can be adapted to several related situations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 16 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]  
[Anonymous], 1977, CLASSICAL BANACH SPA
[3]  
[Anonymous], 1995, CAMBRIDGE STUD ADV M
[4]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[5]  
BOTELHO G, B BELG MATH IN PRESS
[6]   Absolutely summing polynomials on Banach spaces with unconditional basis [J].
Botelho, Geraldo ;
Pellegrino, Daniel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) :50-58
[7]  
DAVIS WJ, 1974, STUD MATH, V51, P81
[8]  
ENFLO P, LINEABILITY SPACEABI
[9]   A uniformly convex hereditarily indecomposable Banach space [J].
Ferenczi, V .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 102 (1) :199-225
[10]  
FERENCZI V, 1995, CR ACAD SCI I-MATH, V320, P49