Novel techniques for constraining neutron-capture rates relevant for r-process heavy-element nucleosynthesis

被引:56
作者
Larsen, A. C. [1 ]
Spyrou, A. [2 ,3 ,4 ]
Liddick, S. N. [2 ,5 ]
Guttormsen, M. [1 ]
机构
[1] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
[2] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
r process; (n; gamma) cross sections; Level density; gamma-ray strength function; Experimental techniques; NUCLEAR-LEVEL-DENSITY; PHOTONEUTRON CROSS-SECTIONS; PYGMY QUADRUPOLE-RESONANCE; STAR MERGERS; GALACTIC EVOLUTION; STRENGTH FUNCTIONS; STATISTICAL-MODEL; DIPOLE RESONANCE; EXCITATION MODE; DETECTOR ARRAY;
D O I
10.1016/j.ppnp.2019.04.002
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The rapid-neutron capture process (r process) is identified as the producer of about 50% of elements heavier than iron. This process requires an astrophysical environment with an extremely high neutron flux over a short amount of time (similar to seconds), creating very neutron-rich nuclei that are subsequently transformed to stable nuclei via beta(-) decay. In 2017, one site for the r process was confirmed: the advanced LIGO and advanced Virgo detectors observed two neutron stars merging, and immediate follow-up measurements of the electromagnetic transients demonstrated an "afterglow" over a broad range of frequencies fully consistent with the expected signal of an r process taking place. Although neutron-star mergers are now known to be r-process element factories, contributions from other sites are still possible, and a comprehensive understanding and description of the r process is still lacking. One key ingredient to large-scale r-process reaction networks is radiative neutron-capture (n, gamma) rates, for which there exist virtually no data for extremely neutron-rich nuclei involved in the r process. Due to the current status of nuclear-reaction theory and our poor understanding of basic nuclear properties such as level densities and average gamma-decay strengths, theoretically estimated (n, gamma) rates may vary by orders of magnitude and represent a major source of uncertainty in any nuclear reaction network calculation of r-process abundances. In this review, we discuss new approaches to provide information on neutron-capture cross sections and reaction rates relevant to the r process. In particular, we focus on indirect, experimental techniques to measure radiative neutron-capture rates. While direct measurements are not available at present, but could possibly be realized in the future, the indirect approaches present a first step towards constraining neutron-capture rates of importance to the r process. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 108
页数:40
相关论文
共 361 条
[71]  
Brink D. M., 1955, THESIS
[72]   Large Low-Energy M1 Strength for 56,57Fe within the Nuclear Shell Model [J].
Brown, B. Alex ;
Larsen, A. C. .
PHYSICAL REVIEW LETTERS, 2014, 113 (25)
[73]   SYNTHESIS OF THE ELEMENTS IN STARS [J].
BURBIDGE, EM ;
BURBIDGE, GR ;
FOWLER, WA ;
HOYLE, F .
REVIEWS OF MODERN PHYSICS, 1957, 29 (04) :547-650
[74]   Nuclear level density and γ-ray strength function of 43Sc [J].
Burger, A. ;
Larsen, A. C. ;
Hilaire, S. ;
Guttormsen, M. ;
Harissopulos, S. ;
Kmiecik, M. ;
Konstantinopoulos, T. ;
Krticka, M. ;
Lagoyannis, A. ;
Lonnroth, T. ;
Mazurek, K. ;
Norrby, M. ;
Nyhus, H. T. ;
Perdikakis, G. ;
Siem, S. ;
Spyrou, A. ;
Syed, N. U. H. .
PHYSICAL REVIEW C, 2012, 85 (06)
[75]   Deducing the 237U(n,f) cross section using the surrogate ratio method [J].
Burke, J. T. ;
Bernstein, L. A. ;
Escher, J. ;
Ahle, L. ;
Church, J. A. ;
Dietrich, F. S. ;
Moody, K. J. ;
Norman, E. B. ;
Phair, L. ;
Fallon, P. ;
Clark, R. M. ;
Deleplanque, M. A. ;
Descovich, M. ;
Cromaz, M. ;
Lee, I. Y. ;
Macchiavelli, A. O. ;
McMahan, M. A. ;
Moretto, L. G. ;
Rodriguez-Vieitez, E. ;
Stephens, F. S. ;
Ai, H. ;
Plettner, C. ;
Beausang, C. ;
Crider, B. .
PHYSICAL REVIEW C, 2006, 73 (05)
[76]   SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC [J].
Callier, S. ;
Dulucq, F. ;
de La Taille, C. ;
Martin-Chassard, G. ;
Seguin-Moreau, N. .
JOURNAL OF INSTRUMENTATION, 2011, 6
[77]   Characterization of Large Volume 3.5" x 8" LaBr3:Ce Detectors for the HECTOR+ array [J].
Camera, F. ;
Giaz, A. ;
Pellegri, L. ;
Riboldi, S. ;
Blasi, N. ;
Boiano, C. ;
Bracco, A. ;
Brambilla, S. ;
Ceruti, S. ;
Coelli, S. ;
Crespi, F. C. L. ;
Csatlos, M. ;
Krasznahorkay, A. ;
Gulyas, J. ;
Lodetti, S. ;
Frega, S. ;
Miani, A. ;
Million, B. ;
Stuhl, L. ;
Wieland, O. .
INPC 2013 - INTERNATIONAL NUCLEAR PHYSICS CONFERENCE, VOL. 2, 2014, 66
[78]   NUCLEAR REACTIONS IN STARS AND NUCLEOGENESIS [J].
CAMERON, AGW .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1957, 69 (408) :201-226
[79]   Statistical γ-decay properties of 64Ni and deduced (n, γ) cross section of the s-process branch-point nucleus 63Ni [J].
Campo, L. Crespo ;
Garrote, F. L. Bello ;
Eriksen, T. K. ;
Gorgen, A. ;
Guttormsen, M. ;
Hadynska-Klek, K. ;
Klintefjord, M. ;
Larsen, A. C. ;
Renstrom, T. ;
Sahin, E. ;
Siem, S. ;
Springer, A. ;
Tornyi, T. G. ;
Tveten, G. M. .
PHYSICAL REVIEW C, 2016, 94 (04)
[80]   RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations [J].
Capote, R. ;
Herman, M. ;
Oblozinsky, P. ;
Young, P. C. ;
Goriely, S. ;
Belgya, T. ;
Ignatyuk, A. V. ;
Koning, A. J. ;
Hilaire, S. ;
Plujko, V. A. ;
Avrigeanu, M. ;
Bersillon, O. ;
Chadwick, M. B. ;
Fukahori, T. ;
Ge, Zhigang ;
Han, Yinlu ;
Kailas, S. ;
Kopecky, J. ;
Maslov, V. M. ;
Reffo, G. ;
Sin, M. ;
Soukhovitskii, E. Sh. ;
Talou, P. .
NUCLEAR DATA SHEETS, 2009, 110 (12) :3107-3213